File size: 37,025 Bytes
6a86ad5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
"""Algorithms for computing symbolic roots of polynomials. """


import math
from functools import reduce

from sympy.core import S, I, pi
from sympy.core.exprtools import factor_terms
from sympy.core.function import _mexpand
from sympy.core.logic import fuzzy_not
from sympy.core.mul import expand_2arg, Mul
from sympy.core.intfunc import igcd
from sympy.core.numbers import Rational, comp
from sympy.core.power import Pow
from sympy.core.relational import Eq
from sympy.core.sorting import ordered
from sympy.core.symbol import Dummy, Symbol, symbols
from sympy.core.sympify import sympify
from sympy.functions import exp, im, cos, acos, Piecewise
from sympy.functions.elementary.miscellaneous import root, sqrt
from sympy.ntheory import divisors, isprime, nextprime
from sympy.polys.domains import EX
from sympy.polys.polyerrors import (PolynomialError, GeneratorsNeeded,
    DomainError, UnsolvableFactorError)
from sympy.polys.polyquinticconst import PolyQuintic
from sympy.polys.polytools import Poly, cancel, factor, gcd_list, discriminant
from sympy.polys.rationaltools import together
from sympy.polys.specialpolys import cyclotomic_poly
from sympy.utilities import public
from sympy.utilities.misc import filldedent



z = Symbol('z')  # importing from abc cause O to be lost as clashing symbol


def roots_linear(f):
    """Returns a list of roots of a linear polynomial."""
    r = -f.nth(0)/f.nth(1)
    dom = f.get_domain()

    if not dom.is_Numerical:
        if dom.is_Composite:
            r = factor(r)
        else:
            from sympy.simplify.simplify import simplify
            r = simplify(r)

    return [r]


def roots_quadratic(f):
    """Returns a list of roots of a quadratic polynomial. If the domain is ZZ
    then the roots will be sorted with negatives coming before positives.
    The ordering will be the same for any numerical coefficients as long as
    the assumptions tested are correct, otherwise the ordering will not be
    sorted (but will be canonical).
    """

    a, b, c = f.all_coeffs()
    dom = f.get_domain()

    def _sqrt(d):
        # remove squares from square root since both will be represented
        # in the results; a similar thing is happening in roots() but
        # must be duplicated here because not all quadratics are binomials
        co = []
        other = []
        for di in Mul.make_args(d):
            if di.is_Pow and di.exp.is_Integer and di.exp % 2 == 0:
                co.append(Pow(di.base, di.exp//2))
            else:
                other.append(di)
        if co:
            d = Mul(*other)
            co = Mul(*co)
            return co*sqrt(d)
        return sqrt(d)

    def _simplify(expr):
        if dom.is_Composite:
            return factor(expr)
        else:
            from sympy.simplify.simplify import simplify
            return simplify(expr)

    if c is S.Zero:
        r0, r1 = S.Zero, -b/a

        if not dom.is_Numerical:
            r1 = _simplify(r1)
        elif r1.is_negative:
            r0, r1 = r1, r0
    elif b is S.Zero:
        r = -c/a
        if not dom.is_Numerical:
            r = _simplify(r)

        R = _sqrt(r)
        r0 = -R
        r1 = R
    else:
        d = b**2 - 4*a*c
        A = 2*a
        B = -b/A

        if not dom.is_Numerical:
            d = _simplify(d)
            B = _simplify(B)

        D = factor_terms(_sqrt(d)/A)
        r0 = B - D
        r1 = B + D
        if a.is_negative:
            r0, r1 = r1, r0
        elif not dom.is_Numerical:
            r0, r1 = [expand_2arg(i) for i in (r0, r1)]

    return [r0, r1]


def roots_cubic(f, trig=False):
    """Returns a list of roots of a cubic polynomial.

    References
    ==========
    [1] https://en.wikipedia.org/wiki/Cubic_function, General formula for roots,
    (accessed November 17, 2014).
    """
    if trig:
        a, b, c, d = f.all_coeffs()
        p = (3*a*c - b**2)/(3*a**2)
        q = (2*b**3 - 9*a*b*c + 27*a**2*d)/(27*a**3)
        D = 18*a*b*c*d - 4*b**3*d + b**2*c**2 - 4*a*c**3 - 27*a**2*d**2
        if (D > 0) == True:
            rv = []
            for k in range(3):
                rv.append(2*sqrt(-p/3)*cos(acos(q/p*sqrt(-3/p)*Rational(3, 2))/3 - k*pi*Rational(2, 3)))
            return [i - b/3/a for i in rv]

    # a*x**3 + b*x**2 + c*x + d -> x**3 + a*x**2 + b*x + c
    _, a, b, c = f.monic().all_coeffs()

    if c is S.Zero:
        x1, x2 = roots([1, a, b], multiple=True)
        return [x1, S.Zero, x2]

    # x**3 + a*x**2 + b*x + c -> u**3 + p*u + q
    p = b - a**2/3
    q = c - a*b/3 + 2*a**3/27

    pon3 = p/3
    aon3 = a/3

    u1 = None
    if p is S.Zero:
        if q is S.Zero:
            return [-aon3]*3
        u1 = -root(q, 3) if q.is_positive else root(-q, 3)
    elif q is S.Zero:
        y1, y2 = roots([1, 0, p], multiple=True)
        return [tmp - aon3 for tmp in [y1, S.Zero, y2]]
    elif q.is_real and q.is_negative:
        u1 = -root(-q/2 + sqrt(q**2/4 + pon3**3), 3)

    coeff = I*sqrt(3)/2
    if u1 is None:
        u1 = S.One
        u2 = Rational(-1, 2) + coeff
        u3 = Rational(-1, 2) - coeff
        b, c, d = a, b, c  # a, b, c, d = S.One, a, b, c
        D0 = b**2 - 3*c  # b**2 - 3*a*c
        D1 = 2*b**3 - 9*b*c + 27*d  # 2*b**3 - 9*a*b*c + 27*a**2*d
        C = root((D1 + sqrt(D1**2 - 4*D0**3))/2, 3)
        return [-(b + uk*C + D0/C/uk)/3 for uk in [u1, u2, u3]]  # -(b + uk*C + D0/C/uk)/3/a

    u2 = u1*(Rational(-1, 2) + coeff)
    u3 = u1*(Rational(-1, 2) - coeff)

    if p is S.Zero:
        return [u1 - aon3, u2 - aon3, u3 - aon3]

    soln = [
        -u1 + pon3/u1 - aon3,
        -u2 + pon3/u2 - aon3,
        -u3 + pon3/u3 - aon3
    ]

    return soln

def _roots_quartic_euler(p, q, r, a):
    """
    Descartes-Euler solution of the quartic equation

    Parameters
    ==========

    p, q, r: coefficients of ``x**4 + p*x**2 + q*x + r``
    a: shift of the roots

    Notes
    =====

    This is a helper function for ``roots_quartic``.

    Look for solutions of the form ::

      ``x1 = sqrt(R) - sqrt(A + B*sqrt(R))``
      ``x2 = -sqrt(R) - sqrt(A - B*sqrt(R))``
      ``x3 = -sqrt(R) + sqrt(A - B*sqrt(R))``
      ``x4 = sqrt(R) + sqrt(A + B*sqrt(R))``

    To satisfy the quartic equation one must have
    ``p = -2*(R + A); q = -4*B*R; r = (R - A)**2 - B**2*R``
    so that ``R`` must satisfy the Descartes-Euler resolvent equation
    ``64*R**3 + 32*p*R**2 + (4*p**2 - 16*r)*R - q**2 = 0``

    If the resolvent does not have a rational solution, return None;
    in that case it is likely that the Ferrari method gives a simpler
    solution.

    Examples
    ========

    >>> from sympy import S
    >>> from sympy.polys.polyroots import _roots_quartic_euler
    >>> p, q, r = -S(64)/5, -S(512)/125, -S(1024)/3125
    >>> _roots_quartic_euler(p, q, r, S(0))[0]
    -sqrt(32*sqrt(5)/125 + 16/5) + 4*sqrt(5)/5
    """
    # solve the resolvent equation
    x = Dummy('x')
    eq = 64*x**3 + 32*p*x**2 + (4*p**2 - 16*r)*x - q**2
    xsols = list(roots(Poly(eq, x), cubics=False).keys())
    xsols = [sol for sol in xsols if sol.is_rational and sol.is_nonzero]
    if not xsols:
        return None
    R = max(xsols)
    c1 = sqrt(R)
    B = -q*c1/(4*R)
    A = -R - p/2
    c2 = sqrt(A + B)
    c3 = sqrt(A - B)
    return [c1 - c2 - a, -c1 - c3 - a, -c1 + c3 - a, c1 + c2 - a]


def roots_quartic(f):
    r"""
    Returns a list of roots of a quartic polynomial.

    There are many references for solving quartic expressions available [1-5].
    This reviewer has found that many of them require one to select from among
    2 or more possible sets of solutions and that some solutions work when one
    is searching for real roots but do not work when searching for complex roots
    (though this is not always stated clearly). The following routine has been
    tested and found to be correct for 0, 2 or 4 complex roots.

    The quasisymmetric case solution [6] looks for quartics that have the form
    `x**4 + A*x**3 + B*x**2 + C*x + D = 0` where `(C/A)**2 = D`.

    Although no general solution that is always applicable for all
    coefficients is known to this reviewer, certain conditions are tested
    to determine the simplest 4 expressions that can be returned:

      1) `f = c + a*(a**2/8 - b/2) == 0`
      2) `g = d - a*(a*(3*a**2/256 - b/16) + c/4) = 0`
      3) if `f != 0` and `g != 0` and `p = -d + a*c/4 - b**2/12` then
        a) `p == 0`
        b) `p != 0`

    Examples
    ========

        >>> from sympy import Poly
        >>> from sympy.polys.polyroots import roots_quartic

        >>> r = roots_quartic(Poly('x**4-6*x**3+17*x**2-26*x+20'))

        >>> # 4 complex roots: 1+-I*sqrt(3), 2+-I
        >>> sorted(str(tmp.evalf(n=2)) for tmp in r)
        ['1.0 + 1.7*I', '1.0 - 1.7*I', '2.0 + 1.0*I', '2.0 - 1.0*I']

    References
    ==========

    1. http://mathforum.org/dr.math/faq/faq.cubic.equations.html
    2. https://en.wikipedia.org/wiki/Quartic_function#Summary_of_Ferrari.27s_method
    3. https://planetmath.org/encyclopedia/GaloisTheoreticDerivationOfTheQuarticFormula.html
    4. https://people.bath.ac.uk/masjhd/JHD-CA.pdf
    5. http://www.albmath.org/files/Math_5713.pdf
    6. https://web.archive.org/web/20171002081448/http://www.statemaster.com/encyclopedia/Quartic-equation
    7. https://eqworld.ipmnet.ru/en/solutions/ae/ae0108.pdf
    """
    _, a, b, c, d = f.monic().all_coeffs()

    if not d:
        return [S.Zero] + roots([1, a, b, c], multiple=True)
    elif (c/a)**2 == d:
        x, m = f.gen, c/a

        g = Poly(x**2 + a*x + b - 2*m, x)

        z1, z2 = roots_quadratic(g)

        h1 = Poly(x**2 - z1*x + m, x)
        h2 = Poly(x**2 - z2*x + m, x)

        r1 = roots_quadratic(h1)
        r2 = roots_quadratic(h2)

        return r1 + r2
    else:
        a2 = a**2
        e = b - 3*a2/8
        f = _mexpand(c + a*(a2/8 - b/2))
        aon4 = a/4
        g = _mexpand(d - aon4*(a*(3*a2/64 - b/4) + c))

        if f.is_zero:
            y1, y2 = [sqrt(tmp) for tmp in
                      roots([1, e, g], multiple=True)]
            return [tmp - aon4 for tmp in [-y1, -y2, y1, y2]]
        if g.is_zero:
            y = [S.Zero] + roots([1, 0, e, f], multiple=True)
            return [tmp - aon4 for tmp in y]
        else:
            # Descartes-Euler method, see [7]
            sols = _roots_quartic_euler(e, f, g, aon4)
            if sols:
                return sols
            # Ferrari method, see [1, 2]
            p = -e**2/12 - g
            q = -e**3/108 + e*g/3 - f**2/8
            TH = Rational(1, 3)

            def _ans(y):
                w = sqrt(e + 2*y)
                arg1 = 3*e + 2*y
                arg2 = 2*f/w
                ans = []
                for s in [-1, 1]:
                    root = sqrt(-(arg1 + s*arg2))
                    for t in [-1, 1]:
                        ans.append((s*w - t*root)/2 - aon4)
                return ans

            # whether a Piecewise is returned or not
            # depends on knowing p, so try to put
            # in a simple form
            p = _mexpand(p)


            # p == 0 case
            y1 = e*Rational(-5, 6) - q**TH
            if p.is_zero:
                return _ans(y1)

            # if p != 0 then u below is not 0
            root = sqrt(q**2/4 + p**3/27)
            r = -q/2 + root  # or -q/2 - root
            u = r**TH  # primary root of solve(x**3 - r, x)
            y2 = e*Rational(-5, 6) + u - p/u/3
            if fuzzy_not(p.is_zero):
                return _ans(y2)

            # sort it out once they know the values of the coefficients
            return [Piecewise((a1, Eq(p, 0)), (a2, True))
                    for a1, a2 in zip(_ans(y1), _ans(y2))]


def roots_binomial(f):
    """Returns a list of roots of a binomial polynomial. If the domain is ZZ
    then the roots will be sorted with negatives coming before positives.
    The ordering will be the same for any numerical coefficients as long as
    the assumptions tested are correct, otherwise the ordering will not be
    sorted (but will be canonical).
    """
    n = f.degree()

    a, b = f.nth(n), f.nth(0)
    base = -cancel(b/a)
    alpha = root(base, n)

    if alpha.is_number:
        alpha = alpha.expand(complex=True)

    # define some parameters that will allow us to order the roots.
    # If the domain is ZZ this is guaranteed to return roots sorted
    # with reals before non-real roots and non-real sorted according
    # to real part and imaginary part, e.g. -1, 1, -1 + I, 2 - I
    neg = base.is_negative
    even = n % 2 == 0
    if neg:
        if even == True and (base + 1).is_positive:
            big = True
        else:
            big = False

    # get the indices in the right order so the computed
    # roots will be sorted when the domain is ZZ
    ks = []
    imax = n//2
    if even:
        ks.append(imax)
        imax -= 1
    if not neg:
        ks.append(0)
    for i in range(imax, 0, -1):
        if neg:
            ks.extend([i, -i])
        else:
            ks.extend([-i, i])
    if neg:
        ks.append(0)
        if big:
            for i in range(0, len(ks), 2):
                pair = ks[i: i + 2]
                pair = list(reversed(pair))

    # compute the roots
    roots, d = [], 2*I*pi/n
    for k in ks:
        zeta = exp(k*d).expand(complex=True)
        roots.append((alpha*zeta).expand(power_base=False))

    return roots


def _inv_totient_estimate(m):
    """
    Find ``(L, U)`` such that ``L <= phi^-1(m) <= U``.

    Examples
    ========

    >>> from sympy.polys.polyroots import _inv_totient_estimate

    >>> _inv_totient_estimate(192)
    (192, 840)
    >>> _inv_totient_estimate(400)
    (400, 1750)

    """
    primes = [ d + 1 for d in divisors(m) if isprime(d + 1) ]

    a, b = 1, 1

    for p in primes:
        a *= p
        b *= p - 1

    L = m
    U = int(math.ceil(m*(float(a)/b)))

    P = p = 2
    primes = []

    while P <= U:
        p = nextprime(p)
        primes.append(p)
        P *= p

    P //= p
    b = 1

    for p in primes[:-1]:
        b *= p - 1

    U = int(math.ceil(m*(float(P)/b)))

    return L, U


def roots_cyclotomic(f, factor=False):
    """Compute roots of cyclotomic polynomials. """
    L, U = _inv_totient_estimate(f.degree())

    for n in range(L, U + 1):
        g = cyclotomic_poly(n, f.gen, polys=True)

        if f.expr == g.expr:
            break
    else:  # pragma: no cover
        raise RuntimeError("failed to find index of a cyclotomic polynomial")

    roots = []

    if not factor:
        # get the indices in the right order so the computed
        # roots will be sorted
        h = n//2
        ks = [i for i in range(1, n + 1) if igcd(i, n) == 1]
        ks.sort(key=lambda x: (x, -1) if x <= h else (abs(x - n), 1))
        d = 2*I*pi/n
        for k in reversed(ks):
            roots.append(exp(k*d).expand(complex=True))
    else:
        g = Poly(f, extension=root(-1, n))

        for h, _ in ordered(g.factor_list()[1]):
            roots.append(-h.TC())

    return roots


def roots_quintic(f):
    """
    Calculate exact roots of a solvable irreducible quintic with rational coefficients.
    Return an empty list if the quintic is reducible or not solvable.
    """
    result = []

    coeff_5, coeff_4, p_, q_, r_, s_ = f.all_coeffs()

    if not all(coeff.is_Rational for coeff in (coeff_5, coeff_4, p_, q_, r_, s_)):
        return result

    if coeff_5 != 1:
        f = Poly(f / coeff_5)
        _, coeff_4, p_, q_, r_, s_ = f.all_coeffs()

    # Cancel coeff_4 to form x^5 + px^3 + qx^2 + rx + s
    if coeff_4:
        p = p_ - 2*coeff_4*coeff_4/5
        q = q_ - 3*coeff_4*p_/5 + 4*coeff_4**3/25
        r = r_ - 2*coeff_4*q_/5 + 3*coeff_4**2*p_/25 - 3*coeff_4**4/125
        s = s_ - coeff_4*r_/5 + coeff_4**2*q_/25 - coeff_4**3*p_/125 + 4*coeff_4**5/3125
        x = f.gen
        f = Poly(x**5 + p*x**3 + q*x**2 + r*x + s)
    else:
        p, q, r, s = p_, q_, r_, s_

    quintic = PolyQuintic(f)

    # Eqn standardized. Algo for solving starts here
    if not f.is_irreducible:
        return result
    f20 = quintic.f20
    # Check if f20 has linear factors over domain Z
    if f20.is_irreducible:
        return result
    # Now, we know that f is solvable
    for _factor in f20.factor_list()[1]:
        if _factor[0].is_linear:
            theta = _factor[0].root(0)
            break
    d = discriminant(f)
    delta = sqrt(d)
    # zeta = a fifth root of unity
    zeta1, zeta2, zeta3, zeta4 = quintic.zeta
    T = quintic.T(theta, d)
    tol = S(1e-10)
    alpha = T[1] + T[2]*delta
    alpha_bar = T[1] - T[2]*delta
    beta = T[3] + T[4]*delta
    beta_bar = T[3] - T[4]*delta

    disc = alpha**2 - 4*beta
    disc_bar = alpha_bar**2 - 4*beta_bar

    l0 = quintic.l0(theta)
    Stwo = S(2)
    l1 = _quintic_simplify((-alpha + sqrt(disc)) / Stwo)
    l4 = _quintic_simplify((-alpha - sqrt(disc)) / Stwo)

    l2 = _quintic_simplify((-alpha_bar + sqrt(disc_bar)) / Stwo)
    l3 = _quintic_simplify((-alpha_bar - sqrt(disc_bar)) / Stwo)

    order = quintic.order(theta, d)
    test = (order*delta.n()) - ( (l1.n() - l4.n())*(l2.n() - l3.n()) )
    # Comparing floats
    if not comp(test, 0, tol):
        l2, l3 = l3, l2

    # Now we have correct order of l's
    R1 = l0 + l1*zeta1 + l2*zeta2 + l3*zeta3 + l4*zeta4
    R2 = l0 + l3*zeta1 + l1*zeta2 + l4*zeta3 + l2*zeta4
    R3 = l0 + l2*zeta1 + l4*zeta2 + l1*zeta3 + l3*zeta4
    R4 = l0 + l4*zeta1 + l3*zeta2 + l2*zeta3 + l1*zeta4

    Res = [None, [None]*5, [None]*5, [None]*5, [None]*5]
    Res_n = [None, [None]*5, [None]*5, [None]*5, [None]*5]

    # Simplifying improves performance a lot for exact expressions
    R1 = _quintic_simplify(R1)
    R2 = _quintic_simplify(R2)
    R3 = _quintic_simplify(R3)
    R4 = _quintic_simplify(R4)

    # hard-coded results for [factor(i) for i in _vsolve(x**5 - a - I*b, x)]
    x0 = z**(S(1)/5)
    x1 = sqrt(2)
    x2 = sqrt(5)
    x3 = sqrt(5 - x2)
    x4 = I*x2
    x5 = x4 + I
    x6 = I*x0/4
    x7 = x1*sqrt(x2 + 5)
    sol = [x0, -x6*(x1*x3 - x5), x6*(x1*x3 + x5), -x6*(x4 + x7 - I), x6*(-x4 + x7 + I)]

    R1 = R1.as_real_imag()
    R2 = R2.as_real_imag()
    R3 = R3.as_real_imag()
    R4 = R4.as_real_imag()

    for i, s in enumerate(sol):
        Res[1][i] = _quintic_simplify(s.xreplace({z: R1[0] + I*R1[1]}))
        Res[2][i] = _quintic_simplify(s.xreplace({z: R2[0] + I*R2[1]}))
        Res[3][i] = _quintic_simplify(s.xreplace({z: R3[0] + I*R3[1]}))
        Res[4][i] = _quintic_simplify(s.xreplace({z: R4[0] + I*R4[1]}))

    for i in range(1, 5):
        for j in range(5):
            Res_n[i][j] = Res[i][j].n()
            Res[i][j] = _quintic_simplify(Res[i][j])
    r1 = Res[1][0]
    r1_n = Res_n[1][0]

    for i in range(5):
        if comp(im(r1_n*Res_n[4][i]), 0, tol):
            r4 = Res[4][i]
            break

    # Now we have various Res values. Each will be a list of five
    # values. We have to pick one r value from those five for each Res
    u, v = quintic.uv(theta, d)
    testplus = (u + v*delta*sqrt(5)).n()
    testminus = (u - v*delta*sqrt(5)).n()

    # Evaluated numbers suffixed with _n
    # We will use evaluated numbers for calculation. Much faster.
    r4_n = r4.n()
    r2 = r3 = None

    for i in range(5):
        r2temp_n = Res_n[2][i]
        for j in range(5):
            # Again storing away the exact number and using
            # evaluated numbers in computations
            r3temp_n = Res_n[3][j]
            if (comp((r1_n*r2temp_n**2 + r4_n*r3temp_n**2 - testplus).n(), 0, tol) and
                comp((r3temp_n*r1_n**2 + r2temp_n*r4_n**2 - testminus).n(), 0, tol)):
                r2 = Res[2][i]
                r3 = Res[3][j]
                break
        if r2 is not None:
            break
    else:
        return []  # fall back to normal solve

    # Now, we have r's so we can get roots
    x1 = (r1 + r2 + r3 + r4)/5
    x2 = (r1*zeta4 + r2*zeta3 + r3*zeta2 + r4*zeta1)/5
    x3 = (r1*zeta3 + r2*zeta1 + r3*zeta4 + r4*zeta2)/5
    x4 = (r1*zeta2 + r2*zeta4 + r3*zeta1 + r4*zeta3)/5
    x5 = (r1*zeta1 + r2*zeta2 + r3*zeta3 + r4*zeta4)/5
    result = [x1, x2, x3, x4, x5]

    # Now check if solutions are distinct

    saw = set()
    for r in result:
        r = r.n(2)
        if r in saw:
            # Roots were identical. Abort, return []
            # and fall back to usual solve
            return []
        saw.add(r)

    # Restore to original equation where coeff_4 is nonzero
    if coeff_4:
        result = [x - coeff_4 / 5 for x in result]
    return result


def _quintic_simplify(expr):
    from sympy.simplify.simplify import powsimp
    expr = powsimp(expr)
    expr = cancel(expr)
    return together(expr)


def _integer_basis(poly):
    """Compute coefficient basis for a polynomial over integers.

    Returns the integer ``div`` such that substituting ``x = div*y``
    ``p(x) = m*q(y)`` where the coefficients of ``q`` are smaller
    than those of ``p``.

    For example ``x**5 + 512*x + 1024 = 0``
    with ``div = 4`` becomes ``y**5 + 2*y + 1 = 0``

    Returns the integer ``div`` or ``None`` if there is no possible scaling.

    Examples
    ========

    >>> from sympy.polys import Poly
    >>> from sympy.abc import x
    >>> from sympy.polys.polyroots import _integer_basis
    >>> p = Poly(x**5 + 512*x + 1024, x, domain='ZZ')
    >>> _integer_basis(p)
    4
    """
    monoms, coeffs = list(zip(*poly.terms()))

    monoms, = list(zip(*monoms))
    coeffs = list(map(abs, coeffs))

    if coeffs[0] < coeffs[-1]:
        coeffs = list(reversed(coeffs))
        n = monoms[0]
        monoms = [n - i for i in reversed(monoms)]
    else:
        return None

    monoms = monoms[:-1]
    coeffs = coeffs[:-1]

    # Special case for two-term polynominals
    if len(monoms) == 1:
        r = Pow(coeffs[0], S.One/monoms[0])
        if r.is_Integer:
            return int(r)
        else:
            return None

    divs = reversed(divisors(gcd_list(coeffs))[1:])

    try:
        div = next(divs)
    except StopIteration:
        return None

    while True:
        for monom, coeff in zip(monoms, coeffs):
            if coeff % div**monom != 0:
                try:
                    div = next(divs)
                except StopIteration:
                    return None
                else:
                    break
        else:
            return div


def preprocess_roots(poly):
    """Try to get rid of symbolic coefficients from ``poly``. """
    coeff = S.One

    poly_func = poly.func
    try:
        _, poly = poly.clear_denoms(convert=True)
    except DomainError:
        return coeff, poly

    poly = poly.primitive()[1]
    poly = poly.retract()

    # TODO: This is fragile. Figure out how to make this independent of construct_domain().
    if poly.get_domain().is_Poly and all(c.is_term for c in poly.rep.coeffs()):
        poly = poly.inject()

        strips = list(zip(*poly.monoms()))
        gens = list(poly.gens[1:])

        base, strips = strips[0], strips[1:]

        for gen, strip in zip(list(gens), strips):
            reverse = False

            if strip[0] < strip[-1]:
                strip = reversed(strip)
                reverse = True

            ratio = None

            for a, b in zip(base, strip):
                if not a and not b:
                    continue
                elif not a or not b:
                    break
                elif b % a != 0:
                    break
                else:
                    _ratio = b // a

                    if ratio is None:
                        ratio = _ratio
                    elif ratio != _ratio:
                        break
            else:
                if reverse:
                    ratio = -ratio

                poly = poly.eval(gen, 1)
                coeff *= gen**(-ratio)
                gens.remove(gen)

        if gens:
            poly = poly.eject(*gens)

    if poly.is_univariate and poly.get_domain().is_ZZ:
        basis = _integer_basis(poly)

        if basis is not None:
            n = poly.degree()

            def func(k, coeff):
                return coeff//basis**(n - k[0])

            poly = poly.termwise(func)
            coeff *= basis

    if not isinstance(poly, poly_func):
        poly = poly_func(poly)
    return coeff, poly


@public
def roots(f, *gens,
        auto=True,
        cubics=True,
        trig=False,
        quartics=True,
        quintics=False,
        multiple=False,
        filter=None,
        predicate=None,
        strict=False,
        **flags):
    """
    Computes symbolic roots of a univariate polynomial.

    Given a univariate polynomial f with symbolic coefficients (or
    a list of the polynomial's coefficients), returns a dictionary
    with its roots and their multiplicities.

    Only roots expressible via radicals will be returned.  To get
    a complete set of roots use RootOf class or numerical methods
    instead. By default cubic and quartic formulas are used in
    the algorithm. To disable them because of unreadable output
    set ``cubics=False`` or ``quartics=False`` respectively. If cubic
    roots are real but are expressed in terms of complex numbers
    (casus irreducibilis [1]) the ``trig`` flag can be set to True to
    have the solutions returned in terms of cosine and inverse cosine
    functions.

    To get roots from a specific domain set the ``filter`` flag with
    one of the following specifiers: Z, Q, R, I, C. By default all
    roots are returned (this is equivalent to setting ``filter='C'``).

    By default a dictionary is returned giving a compact result in
    case of multiple roots.  However to get a list containing all
    those roots set the ``multiple`` flag to True; the list will
    have identical roots appearing next to each other in the result.
    (For a given Poly, the all_roots method will give the roots in
    sorted numerical order.)

    If the ``strict`` flag is True, ``UnsolvableFactorError`` will be
    raised if the roots found are known to be incomplete (because
    some roots are not expressible in radicals).

    Examples
    ========

    >>> from sympy import Poly, roots, degree
    >>> from sympy.abc import x, y

    >>> roots(x**2 - 1, x)
    {-1: 1, 1: 1}

    >>> p = Poly(x**2-1, x)
    >>> roots(p)
    {-1: 1, 1: 1}

    >>> p = Poly(x**2-y, x, y)

    >>> roots(Poly(p, x))
    {-sqrt(y): 1, sqrt(y): 1}

    >>> roots(x**2 - y, x)
    {-sqrt(y): 1, sqrt(y): 1}

    >>> roots([1, 0, -1])
    {-1: 1, 1: 1}

    ``roots`` will only return roots expressible in radicals. If
    the given polynomial has some or all of its roots inexpressible in
    radicals, the result of ``roots`` will be incomplete or empty
    respectively.

    Example where result is incomplete:

    >>> roots((x-1)*(x**5-x+1), x)
    {1: 1}

    In this case, the polynomial has an unsolvable quintic factor
    whose roots cannot be expressed by radicals. The polynomial has a
    rational root (due to the factor `(x-1)`), which is returned since
    ``roots`` always finds all rational roots.

    Example where result is empty:

    >>> roots(x**7-3*x**2+1, x)
    {}

    Here, the polynomial has no roots expressible in radicals, so
    ``roots`` returns an empty dictionary.

    The result produced by ``roots`` is complete if and only if the
    sum of the multiplicity of each root is equal to the degree of
    the polynomial. If strict=True, UnsolvableFactorError will be
    raised if the result is incomplete.

    The result can be be checked for completeness as follows:

    >>> f = x**3-2*x**2+1
    >>> sum(roots(f, x).values()) == degree(f, x)
    True
    >>> f = (x-1)*(x**5-x+1)
    >>> sum(roots(f, x).values()) == degree(f, x)
    False


    References
    ==========

    .. [1] https://en.wikipedia.org/wiki/Cubic_equation#Trigonometric_and_hyperbolic_solutions

    """
    from sympy.polys.polytools import to_rational_coeffs
    flags = dict(flags)

    if isinstance(f, list):
        if gens:
            raise ValueError('redundant generators given')

        x = Dummy('x')

        poly, i = {}, len(f) - 1

        for coeff in f:
            poly[i], i = sympify(coeff), i - 1

        f = Poly(poly, x, field=True)
    else:
        try:
            F = Poly(f, *gens, **flags)
            if not isinstance(f, Poly) and not F.gen.is_Symbol:
                raise PolynomialError("generator must be a Symbol")
            f = F
        except GeneratorsNeeded:
            if multiple:
                return []
            else:
                return {}
        else:
            n = f.degree()
            if f.length() == 2 and n > 2:
                # check for foo**n in constant if dep is c*gen**m
                con, dep = f.as_expr().as_independent(*f.gens)
                fcon = -(-con).factor()
                if fcon != con:
                    con = fcon
                    bases = []
                    for i in Mul.make_args(con):
                        if i.is_Pow:
                            b, e = i.as_base_exp()
                            if e.is_Integer and b.is_Add:
                                bases.append((b, Dummy(positive=True)))
                    if bases:
                        rv = roots(Poly((dep + con).xreplace(dict(bases)),
                            *f.gens), *F.gens,
                            auto=auto,
                            cubics=cubics,
                            trig=trig,
                            quartics=quartics,
                            quintics=quintics,
                            multiple=multiple,
                            filter=filter,
                            predicate=predicate,
                            **flags)
                        return {factor_terms(k.xreplace(
                            {v: k for k, v in bases})
                        ): v for k, v in rv.items()}

        if f.is_multivariate:
            raise PolynomialError('multivariate polynomials are not supported')

    def _update_dict(result, zeros, currentroot, k):
        if currentroot == S.Zero:
            if S.Zero in zeros:
                zeros[S.Zero] += k
            else:
                zeros[S.Zero] = k
        if currentroot in result:
            result[currentroot] += k
        else:
            result[currentroot] = k

    def _try_decompose(f):
        """Find roots using functional decomposition. """
        factors, roots = f.decompose(), []

        for currentroot in _try_heuristics(factors[0]):
            roots.append(currentroot)

        for currentfactor in factors[1:]:
            previous, roots = list(roots), []

            for currentroot in previous:
                g = currentfactor - Poly(currentroot, f.gen)

                for currentroot in _try_heuristics(g):
                    roots.append(currentroot)

        return roots

    def _try_heuristics(f):
        """Find roots using formulas and some tricks. """
        if f.is_ground:
            return []
        if f.is_monomial:
            return [S.Zero]*f.degree()

        if f.length() == 2:
            if f.degree() == 1:
                return list(map(cancel, roots_linear(f)))
            else:
                return roots_binomial(f)

        result = []

        for i in [-1, 1]:
            if not f.eval(i):
                f = f.quo(Poly(f.gen - i, f.gen))
                result.append(i)
                break

        n = f.degree()

        if n == 1:
            result += list(map(cancel, roots_linear(f)))
        elif n == 2:
            result += list(map(cancel, roots_quadratic(f)))
        elif f.is_cyclotomic:
            result += roots_cyclotomic(f)
        elif n == 3 and cubics:
            result += roots_cubic(f, trig=trig)
        elif n == 4 and quartics:
            result += roots_quartic(f)
        elif n == 5 and quintics:
            result += roots_quintic(f)

        return result

    # Convert the generators to symbols
    dumgens = symbols('x:%d' % len(f.gens), cls=Dummy)
    f = f.per(f.rep, dumgens)

    (k,), f = f.terms_gcd()

    if not k:
        zeros = {}
    else:
        zeros = {S.Zero: k}

    coeff, f = preprocess_roots(f)

    if auto and f.get_domain().is_Ring:
        f = f.to_field()

    # Use EX instead of ZZ_I or QQ_I
    if f.get_domain().is_QQ_I:
        f = f.per(f.rep.convert(EX))

    rescale_x = None
    translate_x = None

    result = {}

    if not f.is_ground:
        dom = f.get_domain()
        if not dom.is_Exact and dom.is_Numerical:
            for r in f.nroots():
                _update_dict(result, zeros, r, 1)
        elif f.degree() == 1:
            _update_dict(result, zeros, roots_linear(f)[0], 1)
        elif f.length() == 2:
            roots_fun = roots_quadratic if f.degree() == 2 else roots_binomial
            for r in roots_fun(f):
                _update_dict(result, zeros, r, 1)
        else:
            _, factors = Poly(f.as_expr()).factor_list()
            if len(factors) == 1 and f.degree() == 2:
                for r in roots_quadratic(f):
                    _update_dict(result, zeros, r, 1)
            else:
                if len(factors) == 1 and factors[0][1] == 1:
                    if f.get_domain().is_EX:
                        res = to_rational_coeffs(f)
                        if res:
                            if res[0] is None:
                                translate_x, f = res[2:]
                            else:
                                rescale_x, f = res[1], res[-1]
                            result = roots(f)
                            if not result:
                                for currentroot in _try_decompose(f):
                                    _update_dict(result, zeros, currentroot, 1)
                        else:
                            for r in _try_heuristics(f):
                                _update_dict(result, zeros, r, 1)
                    else:
                        for currentroot in _try_decompose(f):
                            _update_dict(result, zeros, currentroot, 1)
                else:
                    for currentfactor, k in factors:
                        for r in _try_heuristics(Poly(currentfactor, f.gen, field=True)):
                            _update_dict(result, zeros, r, k)

    if coeff is not S.One:
        _result, result, = result, {}

        for currentroot, k in _result.items():
            result[coeff*currentroot] = k

    if filter not in [None, 'C']:
        handlers = {
            'Z': lambda r: r.is_Integer,
            'Q': lambda r: r.is_Rational,
            'R': lambda r: all(a.is_real for a in r.as_numer_denom()),
            'I': lambda r: r.is_imaginary,
        }

        try:
            query = handlers[filter]
        except KeyError:
            raise ValueError("Invalid filter: %s" % filter)

        for zero in dict(result).keys():
            if not query(zero):
                del result[zero]

    if predicate is not None:
        for zero in dict(result).keys():
            if not predicate(zero):
                del result[zero]
    if rescale_x:
        result1 = {}
        for k, v in result.items():
            result1[k*rescale_x] = v
        result = result1
    if translate_x:
        result1 = {}
        for k, v in result.items():
            result1[k + translate_x] = v
        result = result1

    # adding zero roots after non-trivial roots have been translated
    result.update(zeros)

    if strict and sum(result.values()) < f.degree():
        raise UnsolvableFactorError(filldedent('''
            Strict mode: some factors cannot be solved in radicals, so
            a complete list of solutions cannot be returned. Call
            roots with strict=False to get solutions expressible in
            radicals (if there are any).
            '''))

    if not multiple:
        return result
    else:
        zeros = []

        for zero in ordered(result):
            zeros.extend([zero]*result[zero])

        return zeros


def root_factors(f, *gens, filter=None, **args):
    """
    Returns all factors of a univariate polynomial.

    Examples
    ========

    >>> from sympy.abc import x, y
    >>> from sympy.polys.polyroots import root_factors

    >>> root_factors(x**2 - y, x)
    [x - sqrt(y), x + sqrt(y)]

    """
    args = dict(args)

    F = Poly(f, *gens, **args)

    if not F.is_Poly:
        return [f]

    if F.is_multivariate:
        raise ValueError('multivariate polynomials are not supported')

    x = F.gens[0]

    zeros = roots(F, filter=filter)

    if not zeros:
        factors = [F]
    else:
        factors, N = [], 0

        for r, n in ordered(zeros.items()):
            factors, N = factors + [Poly(x - r, x)]*n, N + n

        if N < F.degree():
            G = reduce(lambda p, q: p*q, factors)
            factors.append(F.quo(G))

    if not isinstance(f, Poly):
        factors = [ f.as_expr() for f in factors ]

    return factors