Spaces:
Sleeping
Sleeping
File size: 13,087 Bytes
6a86ad5 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 |
"""Utilities for algebraic number theory. """
from sympy.core.sympify import sympify
from sympy.ntheory.factor_ import factorint
from sympy.polys.domains.rationalfield import QQ
from sympy.polys.domains.integerring import ZZ
from sympy.polys.matrices.exceptions import DMRankError
from sympy.polys.numberfields.minpoly import minpoly
from sympy.printing.lambdarepr import IntervalPrinter
from sympy.utilities.decorator import public
from sympy.utilities.lambdify import lambdify
from mpmath import mp
def is_rat(c):
r"""
Test whether an argument is of an acceptable type to be used as a rational
number.
Explanation
===========
Returns ``True`` on any argument of type ``int``, :ref:`ZZ`, or :ref:`QQ`.
See Also
========
is_int
"""
# ``c in QQ`` is too accepting (e.g. ``3.14 in QQ`` is ``True``),
# ``QQ.of_type(c)`` is too demanding (e.g. ``QQ.of_type(3)`` is ``False``).
#
# Meanwhile, if gmpy2 is installed then ``ZZ.of_type()`` accepts only
# ``mpz``, not ``int``, so we need another clause to ensure ``int`` is
# accepted.
return isinstance(c, int) or ZZ.of_type(c) or QQ.of_type(c)
def is_int(c):
r"""
Test whether an argument is of an acceptable type to be used as an integer.
Explanation
===========
Returns ``True`` on any argument of type ``int`` or :ref:`ZZ`.
See Also
========
is_rat
"""
# If gmpy2 is installed then ``ZZ.of_type()`` accepts only
# ``mpz``, not ``int``, so we need another clause to ensure ``int`` is
# accepted.
return isinstance(c, int) or ZZ.of_type(c)
def get_num_denom(c):
r"""
Given any argument on which :py:func:`~.is_rat` is ``True``, return the
numerator and denominator of this number.
See Also
========
is_rat
"""
r = QQ(c)
return r.numerator, r.denominator
@public
def extract_fundamental_discriminant(a):
r"""
Extract a fundamental discriminant from an integer *a*.
Explanation
===========
Given any rational integer *a* that is 0 or 1 mod 4, write $a = d f^2$,
where $d$ is either 1 or a fundamental discriminant, and return a pair
of dictionaries ``(D, F)`` giving the prime factorizations of $d$ and $f$
respectively, in the same format returned by :py:func:`~.factorint`.
A fundamental discriminant $d$ is different from unity, and is either
1 mod 4 and squarefree, or is 0 mod 4 and such that $d/4$ is squarefree
and 2 or 3 mod 4. This is the same as being the discriminant of some
quadratic field.
Examples
========
>>> from sympy.polys.numberfields.utilities import extract_fundamental_discriminant
>>> print(extract_fundamental_discriminant(-432))
({3: 1, -1: 1}, {2: 2, 3: 1})
For comparison:
>>> from sympy import factorint
>>> print(factorint(-432))
{2: 4, 3: 3, -1: 1}
Parameters
==========
a: int, must be 0 or 1 mod 4
Returns
=======
Pair ``(D, F)`` of dictionaries.
Raises
======
ValueError
If *a* is not 0 or 1 mod 4.
References
==========
.. [1] Cohen, H. *A Course in Computational Algebraic Number Theory.*
(See Prop. 5.1.3)
"""
if a % 4 not in [0, 1]:
raise ValueError('To extract fundamental discriminant, number must be 0 or 1 mod 4.')
if a == 0:
return {}, {0: 1}
if a == 1:
return {}, {}
a_factors = factorint(a)
D = {}
F = {}
# First pass: just make d squarefree, and a/d a perfect square.
# We'll count primes (and units! i.e. -1) that are 3 mod 4 and present in d.
num_3_mod_4 = 0
for p, e in a_factors.items():
if e % 2 == 1:
D[p] = 1
if p % 4 == 3:
num_3_mod_4 += 1
if e >= 3:
F[p] = (e - 1) // 2
else:
F[p] = e // 2
# Second pass: if d is cong. to 2 or 3 mod 4, then we must steal away
# another factor of 4 from f**2 and give it to d.
even = 2 in D
if even or num_3_mod_4 % 2 == 1:
e2 = F[2]
assert e2 > 0
if e2 == 1:
del F[2]
else:
F[2] = e2 - 1
D[2] = 3 if even else 2
return D, F
@public
class AlgIntPowers:
r"""
Compute the powers of an algebraic integer.
Explanation
===========
Given an algebraic integer $\theta$ by its monic irreducible polynomial
``T`` over :ref:`ZZ`, this class computes representations of arbitrarily
high powers of $\theta$, as :ref:`ZZ`-linear combinations over
$\{1, \theta, \ldots, \theta^{n-1}\}$, where $n = \deg(T)$.
The representations are computed using the linear recurrence relations for
powers of $\theta$, derived from the polynomial ``T``. See [1], Sec. 4.2.2.
Optionally, the representations may be reduced with respect to a modulus.
Examples
========
>>> from sympy import Poly, cyclotomic_poly
>>> from sympy.polys.numberfields.utilities import AlgIntPowers
>>> T = Poly(cyclotomic_poly(5))
>>> zeta_pow = AlgIntPowers(T)
>>> print(zeta_pow[0])
[1, 0, 0, 0]
>>> print(zeta_pow[1])
[0, 1, 0, 0]
>>> print(zeta_pow[4]) # doctest: +SKIP
[-1, -1, -1, -1]
>>> print(zeta_pow[24]) # doctest: +SKIP
[-1, -1, -1, -1]
References
==========
.. [1] Cohen, H. *A Course in Computational Algebraic Number Theory.*
"""
def __init__(self, T, modulus=None):
"""
Parameters
==========
T : :py:class:`~.Poly`
The monic irreducible polynomial over :ref:`ZZ` defining the
algebraic integer.
modulus : int, None, optional
If not ``None``, all representations will be reduced w.r.t. this.
"""
self.T = T
self.modulus = modulus
self.n = T.degree()
self.powers_n_and_up = [[-c % self for c in reversed(T.rep.to_list())][:-1]]
self.max_so_far = self.n
def red(self, exp):
return exp if self.modulus is None else exp % self.modulus
def __rmod__(self, other):
return self.red(other)
def compute_up_through(self, e):
m = self.max_so_far
if e <= m: return
n = self.n
r = self.powers_n_and_up
c = r[0]
for k in range(m+1, e+1):
b = r[k-1-n][n-1]
r.append(
[c[0]*b % self] + [
(r[k-1-n][i-1] + c[i]*b) % self for i in range(1, n)
]
)
self.max_so_far = e
def get(self, e):
n = self.n
if e < 0:
raise ValueError('Exponent must be non-negative.')
elif e < n:
return [1 if i == e else 0 for i in range(n)]
else:
self.compute_up_through(e)
return self.powers_n_and_up[e - n]
def __getitem__(self, item):
return self.get(item)
@public
def coeff_search(m, R):
r"""
Generate coefficients for searching through polynomials.
Explanation
===========
Lead coeff is always non-negative. Explore all combinations with coeffs
bounded in absolute value before increasing the bound. Skip the all-zero
list, and skip any repeats. See examples.
Examples
========
>>> from sympy.polys.numberfields.utilities import coeff_search
>>> cs = coeff_search(2, 1)
>>> C = [next(cs) for i in range(13)]
>>> print(C)
[[1, 1], [1, 0], [1, -1], [0, 1], [2, 2], [2, 1], [2, 0], [2, -1], [2, -2],
[1, 2], [1, -2], [0, 2], [3, 3]]
Parameters
==========
m : int
Length of coeff list.
R : int
Initial max abs val for coeffs (will increase as search proceeds).
Returns
=======
generator
Infinite generator of lists of coefficients.
"""
R0 = R
c = [R] * m
while True:
if R == R0 or R in c or -R in c:
yield c[:]
j = m - 1
while c[j] == -R:
j -= 1
c[j] -= 1
for i in range(j + 1, m):
c[i] = R
for j in range(m):
if c[j] != 0:
break
else:
R += 1
c = [R] * m
def supplement_a_subspace(M):
r"""
Extend a basis for a subspace to a basis for the whole space.
Explanation
===========
Given an $n \times r$ matrix *M* of rank $r$ (so $r \leq n$), this function
computes an invertible $n \times n$ matrix $B$ such that the first $r$
columns of $B$ equal *M*.
This operation can be interpreted as a way of extending a basis for a
subspace, to give a basis for the whole space.
To be precise, suppose you have an $n$-dimensional vector space $V$, with
basis $\{v_1, v_2, \ldots, v_n\}$, and an $r$-dimensional subspace $W$ of
$V$, spanned by a basis $\{w_1, w_2, \ldots, w_r\}$, where the $w_j$ are
given as linear combinations of the $v_i$. If the columns of *M* represent
the $w_j$ as such linear combinations, then the columns of the matrix $B$
computed by this function give a new basis $\{u_1, u_2, \ldots, u_n\}$ for
$V$, again relative to the $\{v_i\}$ basis, and such that $u_j = w_j$
for $1 \leq j \leq r$.
Examples
========
Note: The function works in terms of columns, so in these examples we
print matrix transposes in order to make the columns easier to inspect.
>>> from sympy.polys.matrices import DM
>>> from sympy import QQ, FF
>>> from sympy.polys.numberfields.utilities import supplement_a_subspace
>>> M = DM([[1, 7, 0], [2, 3, 4]], QQ).transpose()
>>> print(supplement_a_subspace(M).to_Matrix().transpose())
Matrix([[1, 7, 0], [2, 3, 4], [1, 0, 0]])
>>> M2 = M.convert_to(FF(7))
>>> print(M2.to_Matrix().transpose())
Matrix([[1, 0, 0], [2, 3, -3]])
>>> print(supplement_a_subspace(M2).to_Matrix().transpose())
Matrix([[1, 0, 0], [2, 3, -3], [0, 1, 0]])
Parameters
==========
M : :py:class:`~.DomainMatrix`
The columns give the basis for the subspace.
Returns
=======
:py:class:`~.DomainMatrix`
This matrix is invertible and its first $r$ columns equal *M*.
Raises
======
DMRankError
If *M* was not of maximal rank.
References
==========
.. [1] Cohen, H. *A Course in Computational Algebraic Number Theory*
(See Sec. 2.3.2.)
"""
n, r = M.shape
# Let In be the n x n identity matrix.
# Form the augmented matrix [M | In] and compute RREF.
Maug = M.hstack(M.eye(n, M.domain))
R, pivots = Maug.rref()
if pivots[:r] != tuple(range(r)):
raise DMRankError('M was not of maximal rank')
# Let J be the n x r matrix equal to the first r columns of In.
# Since M is of rank r, RREF reduces [M | In] to [J | A], where A is the product of
# elementary matrices Ei corresp. to the row ops performed by RREF. Since the Ei are
# invertible, so is A. Let B = A^(-1).
A = R[:, r:]
B = A.inv()
# Then B is the desired matrix. It is invertible, since B^(-1) == A.
# And A * [M | In] == [J | A]
# => A * M == J
# => M == B * J == the first r columns of B.
return B
@public
def isolate(alg, eps=None, fast=False):
"""
Find a rational isolating interval for a real algebraic number.
Examples
========
>>> from sympy import isolate, sqrt, Rational
>>> print(isolate(sqrt(2))) # doctest: +SKIP
(1, 2)
>>> print(isolate(sqrt(2), eps=Rational(1, 100)))
(24/17, 17/12)
Parameters
==========
alg : str, int, :py:class:`~.Expr`
The algebraic number to be isolated. Must be a real number, to use this
particular function. However, see also :py:meth:`.Poly.intervals`,
which isolates complex roots when you pass ``all=True``.
eps : positive element of :ref:`QQ`, None, optional (default=None)
Precision to be passed to :py:meth:`.Poly.refine_root`
fast : boolean, optional (default=False)
Say whether fast refinement procedure should be used.
(Will be passed to :py:meth:`.Poly.refine_root`.)
Returns
=======
Pair of rational numbers defining an isolating interval for the given
algebraic number.
See Also
========
.Poly.intervals
"""
alg = sympify(alg)
if alg.is_Rational:
return (alg, alg)
elif not alg.is_real:
raise NotImplementedError(
"complex algebraic numbers are not supported")
func = lambdify((), alg, modules="mpmath", printer=IntervalPrinter())
poly = minpoly(alg, polys=True)
intervals = poly.intervals(sqf=True)
dps, done = mp.dps, False
try:
while not done:
alg = func()
for a, b in intervals:
if a <= alg.a and alg.b <= b:
done = True
break
else:
mp.dps *= 2
finally:
mp.dps = dps
if eps is not None:
a, b = poly.refine_root(a, b, eps=eps, fast=fast)
return (a, b)
|