File size: 22,590 Bytes
6a86ad5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
"""Tests for minimal polynomials. """

from sympy.core.function import expand
from sympy.core import (GoldenRatio, TribonacciConstant)
from sympy.core.numbers import (AlgebraicNumber, I, Rational, oo, pi)
from sympy.core.power import Pow
from sympy.core.singleton import S
from sympy.functions.elementary.exponential import exp
from sympy.functions.elementary.miscellaneous import (cbrt, sqrt)
from sympy.functions.elementary.trigonometric import (cos, sin, tan)
from sympy.polys.polytools import Poly
from sympy.polys.rootoftools import CRootOf
from sympy.solvers.solveset import nonlinsolve
from sympy.geometry import Circle, intersection
from sympy.testing.pytest import raises, slow
from sympy.sets.sets import FiniteSet
from sympy.geometry.point import Point2D
from sympy.polys.numberfields.minpoly import (
    minimal_polynomial,
    _choose_factor,
    _minpoly_op_algebraic_element,
    _separate_sq,
    _minpoly_groebner,
)
from sympy.polys.partfrac import apart
from sympy.polys.polyerrors import (
    NotAlgebraic,
    GeneratorsError,
)

from sympy.polys.domains import QQ
from sympy.polys.rootoftools import rootof
from sympy.polys.polytools import degree

from sympy.abc import x, y, z

Q = Rational


def test_minimal_polynomial():
    assert minimal_polynomial(-7, x) == x + 7
    assert minimal_polynomial(-1, x) == x + 1
    assert minimal_polynomial( 0, x) == x
    assert minimal_polynomial( 1, x) == x - 1
    assert minimal_polynomial( 7, x) == x - 7

    assert minimal_polynomial(sqrt(2), x) == x**2 - 2
    assert minimal_polynomial(sqrt(5), x) == x**2 - 5
    assert minimal_polynomial(sqrt(6), x) == x**2 - 6

    assert minimal_polynomial(2*sqrt(2), x) == x**2 - 8
    assert minimal_polynomial(3*sqrt(5), x) == x**2 - 45
    assert minimal_polynomial(4*sqrt(6), x) == x**2 - 96

    assert minimal_polynomial(2*sqrt(2) + 3, x) == x**2 - 6*x + 1
    assert minimal_polynomial(3*sqrt(5) + 6, x) == x**2 - 12*x - 9
    assert minimal_polynomial(4*sqrt(6) + 7, x) == x**2 - 14*x - 47

    assert minimal_polynomial(2*sqrt(2) - 3, x) == x**2 + 6*x + 1
    assert minimal_polynomial(3*sqrt(5) - 6, x) == x**2 + 12*x - 9
    assert minimal_polynomial(4*sqrt(6) - 7, x) == x**2 + 14*x - 47

    assert minimal_polynomial(sqrt(1 + sqrt(6)), x) == x**4 - 2*x**2 - 5
    assert minimal_polynomial(sqrt(I + sqrt(6)), x) == x**8 - 10*x**4 + 49

    assert minimal_polynomial(2*I + sqrt(2 + I), x) == x**4 + 4*x**2 + 8*x + 37

    assert minimal_polynomial(sqrt(2) + sqrt(3), x) == x**4 - 10*x**2 + 1
    assert minimal_polynomial(
        sqrt(2) + sqrt(3) + sqrt(6), x) == x**4 - 22*x**2 - 48*x - 23

    a = 1 - 9*sqrt(2) + 7*sqrt(3)

    assert minimal_polynomial(
        1/a, x) == 392*x**4 - 1232*x**3 + 612*x**2 + 4*x - 1
    assert minimal_polynomial(
        1/sqrt(a), x) == 392*x**8 - 1232*x**6 + 612*x**4 + 4*x**2 - 1

    raises(NotAlgebraic, lambda: minimal_polynomial(oo, x))
    raises(NotAlgebraic, lambda: minimal_polynomial(2**y, x))
    raises(NotAlgebraic, lambda: minimal_polynomial(sin(1), x))

    assert minimal_polynomial(sqrt(2)).dummy_eq(x**2 - 2)
    assert minimal_polynomial(sqrt(2), x) == x**2 - 2

    assert minimal_polynomial(sqrt(2), polys=True) == Poly(x**2 - 2)
    assert minimal_polynomial(sqrt(2), x, polys=True) == Poly(x**2 - 2, domain='QQ')
    assert minimal_polynomial(sqrt(2), x, polys=True, compose=False) == Poly(x**2 - 2, domain='QQ')

    a = AlgebraicNumber(sqrt(2))
    b = AlgebraicNumber(sqrt(3))

    assert minimal_polynomial(a, x) == x**2 - 2
    assert minimal_polynomial(b, x) == x**2 - 3

    assert minimal_polynomial(a, x, polys=True) == Poly(x**2 - 2, domain='QQ')
    assert minimal_polynomial(b, x, polys=True) == Poly(x**2 - 3, domain='QQ')

    assert minimal_polynomial(sqrt(a/2 + 17), x) == 2*x**4 - 68*x**2 + 577
    assert minimal_polynomial(sqrt(b/2 + 17), x) == 4*x**4 - 136*x**2 + 1153

    a, b = sqrt(2)/3 + 7, AlgebraicNumber(sqrt(2)/3 + 7)

    f = 81*x**8 - 2268*x**6 - 4536*x**5 + 22644*x**4 + 63216*x**3 - \
        31608*x**2 - 189648*x + 141358

    assert minimal_polynomial(sqrt(a) + sqrt(sqrt(a)), x) == f
    assert minimal_polynomial(sqrt(b) + sqrt(sqrt(b)), x) == f

    assert minimal_polynomial(
        a**Q(3, 2), x) == 729*x**4 - 506898*x**2 + 84604519

    # issue 5994
    eq = S('''
        -1/(800*sqrt(-1/240 + 1/(18000*(-1/17280000 +
        sqrt(15)*I/28800000)**(1/3)) + 2*(-1/17280000 +
        sqrt(15)*I/28800000)**(1/3)))''')
    assert minimal_polynomial(eq, x) == 8000*x**2 - 1

    ex = (sqrt(5)*sqrt(I)/(5*sqrt(1 + 125*I))
            + 25*sqrt(5)/(I**Q(5,2)*(1 + 125*I)**Q(3,2))
            + 3125*sqrt(5)/(I**Q(11,2)*(1 + 125*I)**Q(3,2))
            + 5*I*sqrt(1 - I/125))
    mp = minimal_polynomial(ex, x)
    assert mp == 25*x**4 + 5000*x**2 + 250016

    ex = 1 + sqrt(2) + sqrt(3)
    mp = minimal_polynomial(ex, x)
    assert mp == x**4 - 4*x**3 - 4*x**2 + 16*x - 8

    ex = 1/(1 + sqrt(2) + sqrt(3))
    mp = minimal_polynomial(ex, x)
    assert mp == 8*x**4 - 16*x**3 + 4*x**2 + 4*x - 1

    p = (expand((1 + sqrt(2) - 2*sqrt(3) + sqrt(7))**3))**Rational(1, 3)
    mp = minimal_polynomial(p, x)
    assert mp == x**8 - 8*x**7 - 56*x**6 + 448*x**5 + 480*x**4 - 5056*x**3 + 1984*x**2 + 7424*x - 3008
    p = expand((1 + sqrt(2) - 2*sqrt(3) + sqrt(7))**3)
    mp = minimal_polynomial(p, x)
    assert mp == x**8 - 512*x**7 - 118208*x**6 + 31131136*x**5 + 647362560*x**4 - 56026611712*x**3 + 116994310144*x**2 + 404854931456*x - 27216576512

    assert minimal_polynomial(S("-sqrt(5)/2 - 1/2 + (-sqrt(5)/2 - 1/2)**2"), x) == x - 1
    a = 1 + sqrt(2)
    assert minimal_polynomial((a*sqrt(2) + a)**3, x) == x**2 - 198*x + 1

    p = 1/(1 + sqrt(2) + sqrt(3))
    assert minimal_polynomial(p, x, compose=False) == 8*x**4 - 16*x**3 + 4*x**2 + 4*x - 1

    p = 2/(1 + sqrt(2) + sqrt(3))
    assert minimal_polynomial(p, x, compose=False) == x**4 - 4*x**3 + 2*x**2 + 4*x - 2

    assert minimal_polynomial(1 + sqrt(2)*I, x, compose=False) == x**2 - 2*x + 3
    assert minimal_polynomial(1/(1 + sqrt(2)) + 1, x, compose=False) == x**2 - 2
    assert minimal_polynomial(sqrt(2)*I + I*(1 + sqrt(2)), x,
            compose=False) ==  x**4 + 18*x**2 + 49

    # minimal polynomial of I
    assert minimal_polynomial(I, x, domain=QQ.algebraic_field(I)) == x - I
    K = QQ.algebraic_field(I*(sqrt(2) + 1))
    assert minimal_polynomial(I, x, domain=K) == x - I
    assert minimal_polynomial(I, x, domain=QQ) == x**2 + 1
    assert minimal_polynomial(I, x, domain='QQ(y)') == x**2 + 1

    #issue 11553
    assert minimal_polynomial(GoldenRatio, x) == x**2 - x - 1
    assert minimal_polynomial(TribonacciConstant + 3, x) == x**3 - 10*x**2 + 32*x - 34
    assert minimal_polynomial(GoldenRatio, x, domain=QQ.algebraic_field(sqrt(5))) == \
            2*x - sqrt(5) - 1
    assert minimal_polynomial(TribonacciConstant, x, domain=QQ.algebraic_field(cbrt(19 - 3*sqrt(33)))) == \
    48*x - 19*(19 - 3*sqrt(33))**Rational(2, 3) - 3*sqrt(33)*(19 - 3*sqrt(33))**Rational(2, 3) \
    - 16*(19 - 3*sqrt(33))**Rational(1, 3) - 16

    # AlgebraicNumber with an alias.
    # Wester H24
    phi = AlgebraicNumber(S.GoldenRatio.expand(func=True), alias='phi')
    assert minimal_polynomial(phi, x) == x**2 - x - 1


def test_minimal_polynomial_issue_19732():
    # https://github.com/sympy/sympy/issues/19732
    expr = (-280898097948878450887044002323982963174671632174995451265117559518123750720061943079105185551006003416773064305074191140286225850817291393988597615/(-488144716373031204149459129212782509078221364279079444636386844223983756114492222145074506571622290776245390771587888364089507840000000*sqrt(238368341569)*sqrt(S(11918417078450)/63568729
    - 24411360*sqrt(238368341569)/63568729) +
    238326799225996604451373809274348704114327860564921529846705817404208077866956345381951726531296652901169111729944612727047670549086208000000*sqrt(S(11918417078450)/63568729
        - 24411360*sqrt(238368341569)/63568729)) -
    180561807339168676696180573852937120123827201075968945871075967679148461189459480842956689723484024031016208588658753107/(-59358007109636562851035004992802812513575019937126272896569856090962677491318275291141463850327474176000000*sqrt(238368341569)*sqrt(S(11918417078450)/63568729
        - 24411360*sqrt(238368341569)/63568729) +
        28980348180319251787320809875930301310576055074938369007463004788921613896002936637780993064387310446267596800000*sqrt(S(11918417078450)/63568729
            - 24411360*sqrt(238368341569)/63568729)))
    poly = (2151288870990266634727173620565483054187142169311153766675688628985237817262915166497766867289157986631135400926544697981091151416655364879773546003475813114962656742744975460025956167152918469472166170500512008351638710934022160294849059721218824490226159355197136265032810944357335461128949781377875451881300105989490353140886315677977149440000000000000000000000*x**4
            - 5773274155644072033773937864114266313663195672820501581692669271302387257492905909558846459600429795784309388968498783843631580008547382703258503404023153694528041873101120067477617592651525155101107144042679962433039557235772239171616433004024998230222455940044709064078962397144550855715640331680262171410099614469231080995436488414164502751395405398078353242072696360734131090111239998110773292915337556205692674790561090109440000000000000*x**2
            + 211295968822207088328287206509522887719741955693091053353263782924470627623790749534705683380138972642560898936171035770539616881000369889020398551821767092685775598633794696371561234818461806577723412581353857653829324364446419444210520602157621008010129702779407422072249192199762604318993590841636967747488049176548615614290254356975376588506729604345612047361483789518445332415765213187893207704958013682516462853001964919444736320672860140355089)
    assert minimal_polynomial(expr, x) == poly


def test_minimal_polynomial_hi_prec():
    p = 1/sqrt(1 - 9*sqrt(2) + 7*sqrt(3) + Rational(1, 10)**30)
    mp = minimal_polynomial(p, x)
    # checked with Wolfram Alpha
    assert mp.coeff(x**6) == -1232000000000000000000000000001223999999999999999999999999999987999999999999999999999999999996000000000000000000000000000000


def test_minimal_polynomial_sq():
    from sympy.core.add import Add
    from sympy.core.function import expand_multinomial
    p = expand_multinomial((1 + 5*sqrt(2) + 2*sqrt(3))**3)
    mp = minimal_polynomial(p**Rational(1, 3), x)
    assert mp == x**4 - 4*x**3 - 118*x**2 + 244*x + 1321
    p = expand_multinomial((1 + sqrt(2) - 2*sqrt(3) + sqrt(7))**3)
    mp = minimal_polynomial(p**Rational(1, 3), x)
    assert mp == x**8 - 8*x**7 - 56*x**6 + 448*x**5 + 480*x**4 - 5056*x**3 + 1984*x**2 + 7424*x - 3008
    p = Add(*[sqrt(i) for i in range(1, 12)])
    mp = minimal_polynomial(p, x)
    assert mp.subs({x: 0}) == -71965773323122507776


def test_minpoly_compose():
    # issue 6868
    eq = S('''
        -1/(800*sqrt(-1/240 + 1/(18000*(-1/17280000 +
        sqrt(15)*I/28800000)**(1/3)) + 2*(-1/17280000 +
        sqrt(15)*I/28800000)**(1/3)))''')
    mp = minimal_polynomial(eq + 3, x)
    assert mp == 8000*x**2 - 48000*x + 71999

    # issue 5888
    assert minimal_polynomial(exp(I*pi/8), x) == x**8 + 1

    mp = minimal_polynomial(sin(pi/7) + sqrt(2), x)
    assert mp == 4096*x**12 - 63488*x**10 + 351488*x**8 - 826496*x**6 + \
        770912*x**4 - 268432*x**2 + 28561
    mp = minimal_polynomial(cos(pi/7) + sqrt(2), x)
    assert mp == 64*x**6 - 64*x**5 - 432*x**4 + 304*x**3 + 712*x**2 - \
            232*x - 239
    mp = minimal_polynomial(exp(I*pi/7) + sqrt(2), x)
    assert mp == x**12 - 2*x**11 - 9*x**10 + 16*x**9 + 43*x**8 - 70*x**7 - 97*x**6 + 126*x**5 + 211*x**4 - 212*x**3 - 37*x**2 + 142*x + 127

    mp = minimal_polynomial(sin(pi/7) + sqrt(2), x)
    assert mp == 4096*x**12 - 63488*x**10 + 351488*x**8 - 826496*x**6 + \
        770912*x**4 - 268432*x**2 + 28561
    mp = minimal_polynomial(cos(pi/7) + sqrt(2), x)
    assert mp == 64*x**6 - 64*x**5 - 432*x**4 + 304*x**3 + 712*x**2 - \
            232*x - 239
    mp = minimal_polynomial(exp(I*pi/7) + sqrt(2), x)
    assert mp == x**12 - 2*x**11 - 9*x**10 + 16*x**9 + 43*x**8 - 70*x**7 - 97*x**6 + 126*x**5 + 211*x**4 - 212*x**3 - 37*x**2 + 142*x + 127

    mp = minimal_polynomial(exp(I*pi*Rational(2, 7)), x)
    assert mp == x**6 + x**5 + x**4 + x**3 + x**2 + x + 1
    mp = minimal_polynomial(exp(I*pi*Rational(2, 15)), x)
    assert mp == x**8 - x**7 + x**5 - x**4 + x**3 - x + 1
    mp = minimal_polynomial(cos(pi*Rational(2, 7)), x)
    assert mp == 8*x**3 + 4*x**2 - 4*x - 1
    mp = minimal_polynomial(sin(pi*Rational(2, 7)), x)
    ex = (5*cos(pi*Rational(2, 7)) - 7)/(9*cos(pi/7) - 5*cos(pi*Rational(3, 7)))
    mp = minimal_polynomial(ex, x)
    assert mp == x**3 + 2*x**2 - x - 1
    assert minimal_polynomial(-1/(2*cos(pi/7)), x) == x**3 + 2*x**2 - x - 1
    assert minimal_polynomial(sin(pi*Rational(2, 15)), x) == \
            256*x**8 - 448*x**6 + 224*x**4 - 32*x**2 + 1
    assert minimal_polynomial(sin(pi*Rational(5, 14)), x) == 8*x**3 - 4*x**2 - 4*x + 1
    assert minimal_polynomial(cos(pi/15), x) == 16*x**4 + 8*x**3 - 16*x**2 - 8*x + 1

    ex = rootof(x**3 +x*4 + 1, 0)
    mp = minimal_polynomial(ex, x)
    assert mp == x**3 + 4*x + 1
    mp = minimal_polynomial(ex + 1, x)
    assert mp == x**3 - 3*x**2 + 7*x - 4
    assert minimal_polynomial(exp(I*pi/3), x) == x**2 - x + 1
    assert minimal_polynomial(exp(I*pi/4), x) == x**4 + 1
    assert minimal_polynomial(exp(I*pi/6), x) == x**4 - x**2 + 1
    assert minimal_polynomial(exp(I*pi/9), x) == x**6 - x**3 + 1
    assert minimal_polynomial(exp(I*pi/10), x) == x**8 - x**6 + x**4 - x**2 + 1
    assert minimal_polynomial(sin(pi/9), x) == 64*x**6 - 96*x**4 + 36*x**2 - 3
    assert minimal_polynomial(sin(pi/11), x) == 1024*x**10 - 2816*x**8 + \
            2816*x**6 - 1232*x**4 + 220*x**2 - 11
    assert minimal_polynomial(sin(pi/21), x) == 4096*x**12 - 11264*x**10 + \
           11264*x**8 - 4992*x**6 + 960*x**4 - 64*x**2 + 1
    assert minimal_polynomial(cos(pi/9), x) == 8*x**3 - 6*x - 1

    ex = 2**Rational(1, 3)*exp(2*I*pi/3)
    assert minimal_polynomial(ex, x) == x**3 - 2

    raises(NotAlgebraic, lambda: minimal_polynomial(cos(pi*sqrt(2)), x))
    raises(NotAlgebraic, lambda: minimal_polynomial(sin(pi*sqrt(2)), x))
    raises(NotAlgebraic, lambda: minimal_polynomial(exp(1.618*I*pi), x))
    raises(NotAlgebraic, lambda: minimal_polynomial(exp(I*pi*sqrt(2)), x))

    # issue 5934
    ex = 1/(-36000 - 7200*sqrt(5) + (12*sqrt(10)*sqrt(sqrt(5) + 5) +
        24*sqrt(10)*sqrt(-sqrt(5) + 5))**2) + 1
    raises(ZeroDivisionError, lambda: minimal_polynomial(ex, x))

    ex = sqrt(1 + 2**Rational(1,3)) + sqrt(1 + 2**Rational(1,4)) + sqrt(2)
    mp = minimal_polynomial(ex, x)
    assert degree(mp) == 48 and mp.subs({x:0}) == -16630256576

    ex = tan(pi/5, evaluate=False)
    mp = minimal_polynomial(ex, x)
    assert mp == x**4 - 10*x**2 + 5
    assert mp.subs(x, tan(pi/5)).is_zero

    ex = tan(pi/6, evaluate=False)
    mp = minimal_polynomial(ex, x)
    assert mp == 3*x**2 - 1
    assert mp.subs(x, tan(pi/6)).is_zero

    ex = tan(pi/10, evaluate=False)
    mp = minimal_polynomial(ex, x)
    assert mp == 5*x**4 - 10*x**2 + 1
    assert mp.subs(x, tan(pi/10)).is_zero

    raises(NotAlgebraic, lambda: minimal_polynomial(tan(pi*sqrt(2)), x))


def test_minpoly_issue_7113():
    # see discussion in https://github.com/sympy/sympy/pull/2234
    from sympy.simplify.simplify import nsimplify
    r = nsimplify(pi, tolerance=0.000000001)
    mp = minimal_polynomial(r, x)
    assert mp == 1768292677839237920489538677417507171630859375*x**109 - \
    2734577732179183863586489182929671773182898498218854181690460140337930774573792597743853652058046464


def test_minpoly_issue_23677():
    r1 = CRootOf(4000000*x**3 - 239960000*x**2 + 4782399900*x - 31663998001, 0)
    r2 = CRootOf(4000000*x**3 - 239960000*x**2 + 4782399900*x - 31663998001, 1)
    num = (7680000000000000000*r1**4*r2**4 - 614323200000000000000*r1**4*r2**3
            + 18458112576000000000000*r1**4*r2**2 - 246896663036160000000000*r1**4*r2
            + 1240473830323209600000000*r1**4 - 614323200000000000000*r1**3*r2**4
            - 1476464424954240000000000*r1**3*r2**2 - 99225501687553535904000000*r1**3
            + 18458112576000000000000*r1**2*r2**4 - 1476464424954240000000000*r1**2*r2**3
            - 593391458458356671712000000*r1**2*r2 + 2981354896834339226880720000*r1**2
            - 246896663036160000000000*r1*r2**4 - 593391458458356671712000000*r1*r2**2
            - 39878756418031796275267195200*r1 + 1240473830323209600000000*r2**4
            - 99225501687553535904000000*r2**3 + 2981354896834339226880720000*r2**2 -
            39878756418031796275267195200*r2 + 200361370275616536577343808012)
    mp = (x**3 + 59426520028417434406408556687919*x**2 +
        1161475464966574421163316896737773190861975156439163671112508400*x +
        7467465541178623874454517208254940823818304424383315270991298807299003671748074773558707779600)
    assert minimal_polynomial(num, x) == mp


def test_minpoly_issue_7574():
    ex = -(-1)**Rational(1, 3) + (-1)**Rational(2,3)
    assert minimal_polynomial(ex, x) == x + 1


def test_choose_factor():
    # Test that this does not enter an infinite loop:
    bad_factors = [Poly(x-2, x), Poly(x+2, x)]
    raises(NotImplementedError, lambda: _choose_factor(bad_factors, x, sqrt(3)))


def test_minpoly_fraction_field():
    assert minimal_polynomial(1/x, y) == -x*y + 1
    assert minimal_polynomial(1 / (x + 1), y) == (x + 1)*y - 1

    assert minimal_polynomial(sqrt(x), y) == y**2 - x
    assert minimal_polynomial(sqrt(x + 1), y) == y**2 - x - 1
    assert minimal_polynomial(sqrt(x) / x, y) == x*y**2 - 1
    assert minimal_polynomial(sqrt(2) * sqrt(x), y) == y**2 - 2 * x
    assert minimal_polynomial(sqrt(2) + sqrt(x), y) == \
        y**4 + (-2*x - 4)*y**2 + x**2 - 4*x + 4

    assert minimal_polynomial(x**Rational(1,3), y) == y**3 - x
    assert minimal_polynomial(x**Rational(1,3) + sqrt(x), y) == \
        y**6 - 3*x*y**4 - 2*x*y**3 + 3*x**2*y**2 - 6*x**2*y - x**3 + x**2

    assert minimal_polynomial(sqrt(x) / z, y) == z**2*y**2 - x
    assert minimal_polynomial(sqrt(x) / (z + 1), y) == (z**2 + 2*z + 1)*y**2 - x

    assert minimal_polynomial(1/x, y, polys=True) == Poly(-x*y + 1, y, domain='ZZ(x)')
    assert minimal_polynomial(1 / (x + 1), y, polys=True) == \
        Poly((x + 1)*y - 1, y, domain='ZZ(x)')
    assert minimal_polynomial(sqrt(x), y, polys=True) == Poly(y**2 - x, y, domain='ZZ(x)')
    assert minimal_polynomial(sqrt(x) / z, y, polys=True) == \
        Poly(z**2*y**2 - x, y, domain='ZZ(x, z)')

    # this is (sqrt(1 + x**3)/x).integrate(x).diff(x) - sqrt(1 + x**3)/x
    a = sqrt(x)/sqrt(1 + x**(-3)) - sqrt(x**3 + 1)/x + 1/(x**Rational(5, 2)* \
        (1 + x**(-3))**Rational(3, 2)) + 1/(x**Rational(11, 2)*(1 + x**(-3))**Rational(3, 2))

    assert minimal_polynomial(a, y) == y

    raises(NotAlgebraic, lambda: minimal_polynomial(exp(x), y))
    raises(GeneratorsError, lambda: minimal_polynomial(sqrt(x), x))
    raises(GeneratorsError, lambda: minimal_polynomial(sqrt(x) - y, x))
    raises(NotImplementedError, lambda: minimal_polynomial(sqrt(x), y, compose=False))

@slow
def test_minpoly_fraction_field_slow():
    assert minimal_polynomial(minimal_polynomial(sqrt(x**Rational(1,5) - 1),
        y).subs(y, sqrt(x**Rational(1,5) - 1)), z) == z

def test_minpoly_domain():
    assert minimal_polynomial(sqrt(2), x, domain=QQ.algebraic_field(sqrt(2))) == \
        x - sqrt(2)
    assert minimal_polynomial(sqrt(8), x, domain=QQ.algebraic_field(sqrt(2))) == \
        x - 2*sqrt(2)
    assert minimal_polynomial(sqrt(Rational(3,2)), x,
        domain=QQ.algebraic_field(sqrt(2))) == 2*x**2 - 3

    raises(NotAlgebraic, lambda: minimal_polynomial(y, x, domain=QQ))


def test_issue_14831():
    a = -2*sqrt(2)*sqrt(12*sqrt(2) + 17)
    assert minimal_polynomial(a, x) == x**2 + 16*x - 8
    e = (-3*sqrt(12*sqrt(2) + 17) + 12*sqrt(2) +
         17 - 2*sqrt(2)*sqrt(12*sqrt(2) + 17))
    assert minimal_polynomial(e, x) == x


def test_issue_18248():
    assert nonlinsolve([x*y**3-sqrt(2)/3, x*y**6-4/(9*(sqrt(3)))],x,y) == \
            FiniteSet((sqrt(3)/2, sqrt(6)/3), (sqrt(3)/2, -sqrt(6)/6 - sqrt(2)*I/2),
            (sqrt(3)/2, -sqrt(6)/6 + sqrt(2)*I/2))


def test_issue_13230():
    c1 = Circle(Point2D(3, sqrt(5)), 5)
    c2 = Circle(Point2D(4, sqrt(7)), 6)
    assert intersection(c1, c2) == [Point2D(-1 + (-sqrt(7) + sqrt(5))*(-2*sqrt(7)/29
    + 9*sqrt(5)/29 + sqrt(196*sqrt(35) + 1941)/29), -2*sqrt(7)/29 + 9*sqrt(5)/29
    + sqrt(196*sqrt(35) + 1941)/29), Point2D(-1 + (-sqrt(7) + sqrt(5))*(-sqrt(196*sqrt(35)
    + 1941)/29 - 2*sqrt(7)/29 + 9*sqrt(5)/29), -sqrt(196*sqrt(35) + 1941)/29 - 2*sqrt(7)/29 + 9*sqrt(5)/29)]

def test_issue_19760():
    e = 1/(sqrt(1 + sqrt(2)) - sqrt(2)*sqrt(1 + sqrt(2))) + 1
    mp_expected = x**4 - 4*x**3 + 4*x**2 - 2

    for comp in (True, False):
        mp = Poly(minimal_polynomial(e, compose=comp))
        assert mp(x) == mp_expected, "minimal_polynomial(e, compose=%s) = %s; %s expected" % (comp, mp(x), mp_expected)


def test_issue_20163():
    assert apart(1/(x**6+1), extension=[sqrt(3), I]) == \
        (sqrt(3) + I)/(2*x + sqrt(3) + I)/6 + \
        (sqrt(3) - I)/(2*x + sqrt(3) - I)/6 - \
        (sqrt(3) - I)/(2*x - sqrt(3) + I)/6 - \
        (sqrt(3) + I)/(2*x - sqrt(3) - I)/6 + \
        I/(x + I)/6 - I/(x - I)/6


def test_issue_22559():
    alpha = AlgebraicNumber(sqrt(2))
    assert minimal_polynomial(alpha**3, x) == x**2 - 8


def test_issue_22561():
    a = AlgebraicNumber(sqrt(2) + sqrt(3), [S(1) / 2, 0, S(-9) / 2, 0], gen=x)
    assert a.as_expr() == sqrt(2)
    assert minimal_polynomial(a, x) == x**2 - 2
    assert minimal_polynomial(a**3, x) == x**2 - 8


def test_separate_sq_not_impl():
    raises(NotImplementedError, lambda: _separate_sq(x**(S(1)/3) + x))


def test_minpoly_op_algebraic_element_not_impl():
    raises(NotImplementedError,
           lambda: _minpoly_op_algebraic_element(Pow, sqrt(2), sqrt(3), x, QQ))


def test_minpoly_groebner():
    assert _minpoly_groebner(S(2)/3, x, Poly) == 3*x - 2
    assert _minpoly_groebner(
        (sqrt(2) + 3)*(sqrt(2) + 1), x, Poly) == x**2 - 10*x - 7
    assert _minpoly_groebner((sqrt(2) + 3)**(S(1)/3)*(sqrt(2) + 1)**(S(1)/3),
                             x, Poly) == x**6 - 10*x**3 - 7
    assert _minpoly_groebner((sqrt(2) + 3)**(-S(1)/3)*(sqrt(2) + 1)**(S(1)/3),
                             x, Poly) == 7*x**6 - 2*x**3 - 1
    raises(NotAlgebraic, lambda: _minpoly_groebner(pi**2, x, Poly))