Spaces:
Sleeping
Sleeping
File size: 58,700 Bytes
6a86ad5 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 |
from sympy.core.symbol import Dummy
from sympy.ntheory import nextprime
from sympy.ntheory.modular import crt
from sympy.polys.domains import PolynomialRing
from sympy.polys.galoistools import (
gf_gcd, gf_from_dict, gf_gcdex, gf_div, gf_lcm)
from sympy.polys.polyerrors import ModularGCDFailed
from mpmath import sqrt
import random
def _trivial_gcd(f, g):
"""
Compute the GCD of two polynomials in trivial cases, i.e. when one
or both polynomials are zero.
"""
ring = f.ring
if not (f or g):
return ring.zero, ring.zero, ring.zero
elif not f:
if g.LC < ring.domain.zero:
return -g, ring.zero, -ring.one
else:
return g, ring.zero, ring.one
elif not g:
if f.LC < ring.domain.zero:
return -f, -ring.one, ring.zero
else:
return f, ring.one, ring.zero
return None
def _gf_gcd(fp, gp, p):
r"""
Compute the GCD of two univariate polynomials in `\mathbb{Z}_p[x]`.
"""
dom = fp.ring.domain
while gp:
rem = fp
deg = gp.degree()
lcinv = dom.invert(gp.LC, p)
while True:
degrem = rem.degree()
if degrem < deg:
break
rem = (rem - gp.mul_monom((degrem - deg,)).mul_ground(lcinv * rem.LC)).trunc_ground(p)
fp = gp
gp = rem
return fp.mul_ground(dom.invert(fp.LC, p)).trunc_ground(p)
def _degree_bound_univariate(f, g):
r"""
Compute an upper bound for the degree of the GCD of two univariate
integer polynomials `f` and `g`.
The function chooses a suitable prime `p` and computes the GCD of
`f` and `g` in `\mathbb{Z}_p[x]`. The choice of `p` guarantees that
the degree in `\mathbb{Z}_p[x]` is greater than or equal to the degree
in `\mathbb{Z}[x]`.
Parameters
==========
f : PolyElement
univariate integer polynomial
g : PolyElement
univariate integer polynomial
"""
gamma = f.ring.domain.gcd(f.LC, g.LC)
p = 1
p = nextprime(p)
while gamma % p == 0:
p = nextprime(p)
fp = f.trunc_ground(p)
gp = g.trunc_ground(p)
hp = _gf_gcd(fp, gp, p)
deghp = hp.degree()
return deghp
def _chinese_remainder_reconstruction_univariate(hp, hq, p, q):
r"""
Construct a polynomial `h_{pq}` in `\mathbb{Z}_{p q}[x]` such that
.. math ::
h_{pq} = h_p \; \mathrm{mod} \, p
h_{pq} = h_q \; \mathrm{mod} \, q
for relatively prime integers `p` and `q` and polynomials
`h_p` and `h_q` in `\mathbb{Z}_p[x]` and `\mathbb{Z}_q[x]`
respectively.
The coefficients of the polynomial `h_{pq}` are computed with the
Chinese Remainder Theorem. The symmetric representation in
`\mathbb{Z}_p[x]`, `\mathbb{Z}_q[x]` and `\mathbb{Z}_{p q}[x]` is used.
It is assumed that `h_p` and `h_q` have the same degree.
Parameters
==========
hp : PolyElement
univariate integer polynomial with coefficients in `\mathbb{Z}_p`
hq : PolyElement
univariate integer polynomial with coefficients in `\mathbb{Z}_q`
p : Integer
modulus of `h_p`, relatively prime to `q`
q : Integer
modulus of `h_q`, relatively prime to `p`
Examples
========
>>> from sympy.polys.modulargcd import _chinese_remainder_reconstruction_univariate
>>> from sympy.polys import ring, ZZ
>>> R, x = ring("x", ZZ)
>>> p = 3
>>> q = 5
>>> hp = -x**3 - 1
>>> hq = 2*x**3 - 2*x**2 + x
>>> hpq = _chinese_remainder_reconstruction_univariate(hp, hq, p, q)
>>> hpq
2*x**3 + 3*x**2 + 6*x + 5
>>> hpq.trunc_ground(p) == hp
True
>>> hpq.trunc_ground(q) == hq
True
"""
n = hp.degree()
x = hp.ring.gens[0]
hpq = hp.ring.zero
for i in range(n+1):
hpq[(i,)] = crt([p, q], [hp.coeff(x**i), hq.coeff(x**i)], symmetric=True)[0]
hpq.strip_zero()
return hpq
def modgcd_univariate(f, g):
r"""
Computes the GCD of two polynomials in `\mathbb{Z}[x]` using a modular
algorithm.
The algorithm computes the GCD of two univariate integer polynomials
`f` and `g` by computing the GCD in `\mathbb{Z}_p[x]` for suitable
primes `p` and then reconstructing the coefficients with the Chinese
Remainder Theorem. Trial division is only made for candidates which
are very likely the desired GCD.
Parameters
==========
f : PolyElement
univariate integer polynomial
g : PolyElement
univariate integer polynomial
Returns
=======
h : PolyElement
GCD of the polynomials `f` and `g`
cff : PolyElement
cofactor of `f`, i.e. `\frac{f}{h}`
cfg : PolyElement
cofactor of `g`, i.e. `\frac{g}{h}`
Examples
========
>>> from sympy.polys.modulargcd import modgcd_univariate
>>> from sympy.polys import ring, ZZ
>>> R, x = ring("x", ZZ)
>>> f = x**5 - 1
>>> g = x - 1
>>> h, cff, cfg = modgcd_univariate(f, g)
>>> h, cff, cfg
(x - 1, x**4 + x**3 + x**2 + x + 1, 1)
>>> cff * h == f
True
>>> cfg * h == g
True
>>> f = 6*x**2 - 6
>>> g = 2*x**2 + 4*x + 2
>>> h, cff, cfg = modgcd_univariate(f, g)
>>> h, cff, cfg
(2*x + 2, 3*x - 3, x + 1)
>>> cff * h == f
True
>>> cfg * h == g
True
References
==========
1. [Monagan00]_
"""
assert f.ring == g.ring and f.ring.domain.is_ZZ
result = _trivial_gcd(f, g)
if result is not None:
return result
ring = f.ring
cf, f = f.primitive()
cg, g = g.primitive()
ch = ring.domain.gcd(cf, cg)
bound = _degree_bound_univariate(f, g)
if bound == 0:
return ring(ch), f.mul_ground(cf // ch), g.mul_ground(cg // ch)
gamma = ring.domain.gcd(f.LC, g.LC)
m = 1
p = 1
while True:
p = nextprime(p)
while gamma % p == 0:
p = nextprime(p)
fp = f.trunc_ground(p)
gp = g.trunc_ground(p)
hp = _gf_gcd(fp, gp, p)
deghp = hp.degree()
if deghp > bound:
continue
elif deghp < bound:
m = 1
bound = deghp
continue
hp = hp.mul_ground(gamma).trunc_ground(p)
if m == 1:
m = p
hlastm = hp
continue
hm = _chinese_remainder_reconstruction_univariate(hp, hlastm, p, m)
m *= p
if not hm == hlastm:
hlastm = hm
continue
h = hm.quo_ground(hm.content())
fquo, frem = f.div(h)
gquo, grem = g.div(h)
if not frem and not grem:
if h.LC < 0:
ch = -ch
h = h.mul_ground(ch)
cff = fquo.mul_ground(cf // ch)
cfg = gquo.mul_ground(cg // ch)
return h, cff, cfg
def _primitive(f, p):
r"""
Compute the content and the primitive part of a polynomial in
`\mathbb{Z}_p[x_0, \ldots, x_{k-2}, y] \cong \mathbb{Z}_p[y][x_0, \ldots, x_{k-2}]`.
Parameters
==========
f : PolyElement
integer polynomial in `\mathbb{Z}_p[x0, \ldots, x{k-2}, y]`
p : Integer
modulus of `f`
Returns
=======
contf : PolyElement
integer polynomial in `\mathbb{Z}_p[y]`, content of `f`
ppf : PolyElement
primitive part of `f`, i.e. `\frac{f}{contf}`
Examples
========
>>> from sympy.polys.modulargcd import _primitive
>>> from sympy.polys import ring, ZZ
>>> R, x, y = ring("x, y", ZZ)
>>> p = 3
>>> f = x**2*y**2 + x**2*y - y**2 - y
>>> _primitive(f, p)
(y**2 + y, x**2 - 1)
>>> R, x, y, z = ring("x, y, z", ZZ)
>>> f = x*y*z - y**2*z**2
>>> _primitive(f, p)
(z, x*y - y**2*z)
"""
ring = f.ring
dom = ring.domain
k = ring.ngens
coeffs = {}
for monom, coeff in f.iterterms():
if monom[:-1] not in coeffs:
coeffs[monom[:-1]] = {}
coeffs[monom[:-1]][monom[-1]] = coeff
cont = []
for coeff in iter(coeffs.values()):
cont = gf_gcd(cont, gf_from_dict(coeff, p, dom), p, dom)
yring = ring.clone(symbols=ring.symbols[k-1])
contf = yring.from_dense(cont).trunc_ground(p)
return contf, f.quo(contf.set_ring(ring))
def _deg(f):
r"""
Compute the degree of a multivariate polynomial
`f \in K[x_0, \ldots, x_{k-2}, y] \cong K[y][x_0, \ldots, x_{k-2}]`.
Parameters
==========
f : PolyElement
polynomial in `K[x_0, \ldots, x_{k-2}, y]`
Returns
=======
degf : Integer tuple
degree of `f` in `x_0, \ldots, x_{k-2}`
Examples
========
>>> from sympy.polys.modulargcd import _deg
>>> from sympy.polys import ring, ZZ
>>> R, x, y = ring("x, y", ZZ)
>>> f = x**2*y**2 + x**2*y - 1
>>> _deg(f)
(2,)
>>> R, x, y, z = ring("x, y, z", ZZ)
>>> f = x**2*y**2 + x**2*y - 1
>>> _deg(f)
(2, 2)
>>> f = x*y*z - y**2*z**2
>>> _deg(f)
(1, 1)
"""
k = f.ring.ngens
degf = (0,) * (k-1)
for monom in f.itermonoms():
if monom[:-1] > degf:
degf = monom[:-1]
return degf
def _LC(f):
r"""
Compute the leading coefficient of a multivariate polynomial
`f \in K[x_0, \ldots, x_{k-2}, y] \cong K[y][x_0, \ldots, x_{k-2}]`.
Parameters
==========
f : PolyElement
polynomial in `K[x_0, \ldots, x_{k-2}, y]`
Returns
=======
lcf : PolyElement
polynomial in `K[y]`, leading coefficient of `f`
Examples
========
>>> from sympy.polys.modulargcd import _LC
>>> from sympy.polys import ring, ZZ
>>> R, x, y = ring("x, y", ZZ)
>>> f = x**2*y**2 + x**2*y - 1
>>> _LC(f)
y**2 + y
>>> R, x, y, z = ring("x, y, z", ZZ)
>>> f = x**2*y**2 + x**2*y - 1
>>> _LC(f)
1
>>> f = x*y*z - y**2*z**2
>>> _LC(f)
z
"""
ring = f.ring
k = ring.ngens
yring = ring.clone(symbols=ring.symbols[k-1])
y = yring.gens[0]
degf = _deg(f)
lcf = yring.zero
for monom, coeff in f.iterterms():
if monom[:-1] == degf:
lcf += coeff*y**monom[-1]
return lcf
def _swap(f, i):
"""
Make the variable `x_i` the leading one in a multivariate polynomial `f`.
"""
ring = f.ring
fswap = ring.zero
for monom, coeff in f.iterterms():
monomswap = (monom[i],) + monom[:i] + monom[i+1:]
fswap[monomswap] = coeff
return fswap
def _degree_bound_bivariate(f, g):
r"""
Compute upper degree bounds for the GCD of two bivariate
integer polynomials `f` and `g`.
The GCD is viewed as a polynomial in `\mathbb{Z}[y][x]` and the
function returns an upper bound for its degree and one for the degree
of its content. This is done by choosing a suitable prime `p` and
computing the GCD of the contents of `f \; \mathrm{mod} \, p` and
`g \; \mathrm{mod} \, p`. The choice of `p` guarantees that the degree
of the content in `\mathbb{Z}_p[y]` is greater than or equal to the
degree in `\mathbb{Z}[y]`. To obtain the degree bound in the variable
`x`, the polynomials are evaluated at `y = a` for a suitable
`a \in \mathbb{Z}_p` and then their GCD in `\mathbb{Z}_p[x]` is
computed. If no such `a` exists, i.e. the degree in `\mathbb{Z}_p[x]`
is always smaller than the one in `\mathbb{Z}[y][x]`, then the bound is
set to the minimum of the degrees of `f` and `g` in `x`.
Parameters
==========
f : PolyElement
bivariate integer polynomial
g : PolyElement
bivariate integer polynomial
Returns
=======
xbound : Integer
upper bound for the degree of the GCD of the polynomials `f` and
`g` in the variable `x`
ycontbound : Integer
upper bound for the degree of the content of the GCD of the
polynomials `f` and `g` in the variable `y`
References
==========
1. [Monagan00]_
"""
ring = f.ring
gamma1 = ring.domain.gcd(f.LC, g.LC)
gamma2 = ring.domain.gcd(_swap(f, 1).LC, _swap(g, 1).LC)
badprimes = gamma1 * gamma2
p = 1
p = nextprime(p)
while badprimes % p == 0:
p = nextprime(p)
fp = f.trunc_ground(p)
gp = g.trunc_ground(p)
contfp, fp = _primitive(fp, p)
contgp, gp = _primitive(gp, p)
conthp = _gf_gcd(contfp, contgp, p) # polynomial in Z_p[y]
ycontbound = conthp.degree()
# polynomial in Z_p[y]
delta = _gf_gcd(_LC(fp), _LC(gp), p)
for a in range(p):
if not delta.evaluate(0, a) % p:
continue
fpa = fp.evaluate(1, a).trunc_ground(p)
gpa = gp.evaluate(1, a).trunc_ground(p)
hpa = _gf_gcd(fpa, gpa, p)
xbound = hpa.degree()
return xbound, ycontbound
return min(fp.degree(), gp.degree()), ycontbound
def _chinese_remainder_reconstruction_multivariate(hp, hq, p, q):
r"""
Construct a polynomial `h_{pq}` in
`\mathbb{Z}_{p q}[x_0, \ldots, x_{k-1}]` such that
.. math ::
h_{pq} = h_p \; \mathrm{mod} \, p
h_{pq} = h_q \; \mathrm{mod} \, q
for relatively prime integers `p` and `q` and polynomials
`h_p` and `h_q` in `\mathbb{Z}_p[x_0, \ldots, x_{k-1}]` and
`\mathbb{Z}_q[x_0, \ldots, x_{k-1}]` respectively.
The coefficients of the polynomial `h_{pq}` are computed with the
Chinese Remainder Theorem. The symmetric representation in
`\mathbb{Z}_p[x_0, \ldots, x_{k-1}]`,
`\mathbb{Z}_q[x_0, \ldots, x_{k-1}]` and
`\mathbb{Z}_{p q}[x_0, \ldots, x_{k-1}]` is used.
Parameters
==========
hp : PolyElement
multivariate integer polynomial with coefficients in `\mathbb{Z}_p`
hq : PolyElement
multivariate integer polynomial with coefficients in `\mathbb{Z}_q`
p : Integer
modulus of `h_p`, relatively prime to `q`
q : Integer
modulus of `h_q`, relatively prime to `p`
Examples
========
>>> from sympy.polys.modulargcd import _chinese_remainder_reconstruction_multivariate
>>> from sympy.polys import ring, ZZ
>>> R, x, y = ring("x, y", ZZ)
>>> p = 3
>>> q = 5
>>> hp = x**3*y - x**2 - 1
>>> hq = -x**3*y - 2*x*y**2 + 2
>>> hpq = _chinese_remainder_reconstruction_multivariate(hp, hq, p, q)
>>> hpq
4*x**3*y + 5*x**2 + 3*x*y**2 + 2
>>> hpq.trunc_ground(p) == hp
True
>>> hpq.trunc_ground(q) == hq
True
>>> R, x, y, z = ring("x, y, z", ZZ)
>>> p = 6
>>> q = 5
>>> hp = 3*x**4 - y**3*z + z
>>> hq = -2*x**4 + z
>>> hpq = _chinese_remainder_reconstruction_multivariate(hp, hq, p, q)
>>> hpq
3*x**4 + 5*y**3*z + z
>>> hpq.trunc_ground(p) == hp
True
>>> hpq.trunc_ground(q) == hq
True
"""
hpmonoms = set(hp.monoms())
hqmonoms = set(hq.monoms())
monoms = hpmonoms.intersection(hqmonoms)
hpmonoms.difference_update(monoms)
hqmonoms.difference_update(monoms)
zero = hp.ring.domain.zero
hpq = hp.ring.zero
if isinstance(hp.ring.domain, PolynomialRing):
crt_ = _chinese_remainder_reconstruction_multivariate
else:
def crt_(cp, cq, p, q):
return crt([p, q], [cp, cq], symmetric=True)[0]
for monom in monoms:
hpq[monom] = crt_(hp[monom], hq[monom], p, q)
for monom in hpmonoms:
hpq[monom] = crt_(hp[monom], zero, p, q)
for monom in hqmonoms:
hpq[monom] = crt_(zero, hq[monom], p, q)
return hpq
def _interpolate_multivariate(evalpoints, hpeval, ring, i, p, ground=False):
r"""
Reconstruct a polynomial `h_p` in `\mathbb{Z}_p[x_0, \ldots, x_{k-1}]`
from a list of evaluation points in `\mathbb{Z}_p` and a list of
polynomials in
`\mathbb{Z}_p[x_0, \ldots, x_{i-1}, x_{i+1}, \ldots, x_{k-1}]`, which
are the images of `h_p` evaluated in the variable `x_i`.
It is also possible to reconstruct a parameter of the ground domain,
i.e. if `h_p` is a polynomial over `\mathbb{Z}_p[x_0, \ldots, x_{k-1}]`.
In this case, one has to set ``ground=True``.
Parameters
==========
evalpoints : list of Integer objects
list of evaluation points in `\mathbb{Z}_p`
hpeval : list of PolyElement objects
list of polynomials in (resp. over)
`\mathbb{Z}_p[x_0, \ldots, x_{i-1}, x_{i+1}, \ldots, x_{k-1}]`,
images of `h_p` evaluated in the variable `x_i`
ring : PolyRing
`h_p` will be an element of this ring
i : Integer
index of the variable which has to be reconstructed
p : Integer
prime number, modulus of `h_p`
ground : Boolean
indicates whether `x_i` is in the ground domain, default is
``False``
Returns
=======
hp : PolyElement
interpolated polynomial in (resp. over)
`\mathbb{Z}_p[x_0, \ldots, x_{k-1}]`
"""
hp = ring.zero
if ground:
domain = ring.domain.domain
y = ring.domain.gens[i]
else:
domain = ring.domain
y = ring.gens[i]
for a, hpa in zip(evalpoints, hpeval):
numer = ring.one
denom = domain.one
for b in evalpoints:
if b == a:
continue
numer *= y - b
denom *= a - b
denom = domain.invert(denom, p)
coeff = numer.mul_ground(denom)
hp += hpa.set_ring(ring) * coeff
return hp.trunc_ground(p)
def modgcd_bivariate(f, g):
r"""
Computes the GCD of two polynomials in `\mathbb{Z}[x, y]` using a
modular algorithm.
The algorithm computes the GCD of two bivariate integer polynomials
`f` and `g` by calculating the GCD in `\mathbb{Z}_p[x, y]` for
suitable primes `p` and then reconstructing the coefficients with the
Chinese Remainder Theorem. To compute the bivariate GCD over
`\mathbb{Z}_p`, the polynomials `f \; \mathrm{mod} \, p` and
`g \; \mathrm{mod} \, p` are evaluated at `y = a` for certain
`a \in \mathbb{Z}_p` and then their univariate GCD in `\mathbb{Z}_p[x]`
is computed. Interpolating those yields the bivariate GCD in
`\mathbb{Z}_p[x, y]`. To verify the result in `\mathbb{Z}[x, y]`, trial
division is done, but only for candidates which are very likely the
desired GCD.
Parameters
==========
f : PolyElement
bivariate integer polynomial
g : PolyElement
bivariate integer polynomial
Returns
=======
h : PolyElement
GCD of the polynomials `f` and `g`
cff : PolyElement
cofactor of `f`, i.e. `\frac{f}{h}`
cfg : PolyElement
cofactor of `g`, i.e. `\frac{g}{h}`
Examples
========
>>> from sympy.polys.modulargcd import modgcd_bivariate
>>> from sympy.polys import ring, ZZ
>>> R, x, y = ring("x, y", ZZ)
>>> f = x**2 - y**2
>>> g = x**2 + 2*x*y + y**2
>>> h, cff, cfg = modgcd_bivariate(f, g)
>>> h, cff, cfg
(x + y, x - y, x + y)
>>> cff * h == f
True
>>> cfg * h == g
True
>>> f = x**2*y - x**2 - 4*y + 4
>>> g = x + 2
>>> h, cff, cfg = modgcd_bivariate(f, g)
>>> h, cff, cfg
(x + 2, x*y - x - 2*y + 2, 1)
>>> cff * h == f
True
>>> cfg * h == g
True
References
==========
1. [Monagan00]_
"""
assert f.ring == g.ring and f.ring.domain.is_ZZ
result = _trivial_gcd(f, g)
if result is not None:
return result
ring = f.ring
cf, f = f.primitive()
cg, g = g.primitive()
ch = ring.domain.gcd(cf, cg)
xbound, ycontbound = _degree_bound_bivariate(f, g)
if xbound == ycontbound == 0:
return ring(ch), f.mul_ground(cf // ch), g.mul_ground(cg // ch)
fswap = _swap(f, 1)
gswap = _swap(g, 1)
degyf = fswap.degree()
degyg = gswap.degree()
ybound, xcontbound = _degree_bound_bivariate(fswap, gswap)
if ybound == xcontbound == 0:
return ring(ch), f.mul_ground(cf // ch), g.mul_ground(cg // ch)
# TODO: to improve performance, choose the main variable here
gamma1 = ring.domain.gcd(f.LC, g.LC)
gamma2 = ring.domain.gcd(fswap.LC, gswap.LC)
badprimes = gamma1 * gamma2
m = 1
p = 1
while True:
p = nextprime(p)
while badprimes % p == 0:
p = nextprime(p)
fp = f.trunc_ground(p)
gp = g.trunc_ground(p)
contfp, fp = _primitive(fp, p)
contgp, gp = _primitive(gp, p)
conthp = _gf_gcd(contfp, contgp, p) # monic polynomial in Z_p[y]
degconthp = conthp.degree()
if degconthp > ycontbound:
continue
elif degconthp < ycontbound:
m = 1
ycontbound = degconthp
continue
# polynomial in Z_p[y]
delta = _gf_gcd(_LC(fp), _LC(gp), p)
degcontfp = contfp.degree()
degcontgp = contgp.degree()
degdelta = delta.degree()
N = min(degyf - degcontfp, degyg - degcontgp,
ybound - ycontbound + degdelta) + 1
if p < N:
continue
n = 0
evalpoints = []
hpeval = []
unlucky = False
for a in range(p):
deltaa = delta.evaluate(0, a)
if not deltaa % p:
continue
fpa = fp.evaluate(1, a).trunc_ground(p)
gpa = gp.evaluate(1, a).trunc_ground(p)
hpa = _gf_gcd(fpa, gpa, p) # monic polynomial in Z_p[x]
deghpa = hpa.degree()
if deghpa > xbound:
continue
elif deghpa < xbound:
m = 1
xbound = deghpa
unlucky = True
break
hpa = hpa.mul_ground(deltaa).trunc_ground(p)
evalpoints.append(a)
hpeval.append(hpa)
n += 1
if n == N:
break
if unlucky:
continue
if n < N:
continue
hp = _interpolate_multivariate(evalpoints, hpeval, ring, 1, p)
hp = _primitive(hp, p)[1]
hp = hp * conthp.set_ring(ring)
degyhp = hp.degree(1)
if degyhp > ybound:
continue
if degyhp < ybound:
m = 1
ybound = degyhp
continue
hp = hp.mul_ground(gamma1).trunc_ground(p)
if m == 1:
m = p
hlastm = hp
continue
hm = _chinese_remainder_reconstruction_multivariate(hp, hlastm, p, m)
m *= p
if not hm == hlastm:
hlastm = hm
continue
h = hm.quo_ground(hm.content())
fquo, frem = f.div(h)
gquo, grem = g.div(h)
if not frem and not grem:
if h.LC < 0:
ch = -ch
h = h.mul_ground(ch)
cff = fquo.mul_ground(cf // ch)
cfg = gquo.mul_ground(cg // ch)
return h, cff, cfg
def _modgcd_multivariate_p(f, g, p, degbound, contbound):
r"""
Compute the GCD of two polynomials in
`\mathbb{Z}_p[x_0, \ldots, x_{k-1}]`.
The algorithm reduces the problem step by step by evaluating the
polynomials `f` and `g` at `x_{k-1} = a` for suitable
`a \in \mathbb{Z}_p` and then calls itself recursively to compute the GCD
in `\mathbb{Z}_p[x_0, \ldots, x_{k-2}]`. If these recursive calls are
successful for enough evaluation points, the GCD in `k` variables is
interpolated, otherwise the algorithm returns ``None``. Every time a GCD
or a content is computed, their degrees are compared with the bounds. If
a degree greater then the bound is encountered, then the current call
returns ``None`` and a new evaluation point has to be chosen. If at some
point the degree is smaller, the correspondent bound is updated and the
algorithm fails.
Parameters
==========
f : PolyElement
multivariate integer polynomial with coefficients in `\mathbb{Z}_p`
g : PolyElement
multivariate integer polynomial with coefficients in `\mathbb{Z}_p`
p : Integer
prime number, modulus of `f` and `g`
degbound : list of Integer objects
``degbound[i]`` is an upper bound for the degree of the GCD of `f`
and `g` in the variable `x_i`
contbound : list of Integer objects
``contbound[i]`` is an upper bound for the degree of the content of
the GCD in `\mathbb{Z}_p[x_i][x_0, \ldots, x_{i-1}]`,
``contbound[0]`` is not used can therefore be chosen
arbitrarily.
Returns
=======
h : PolyElement
GCD of the polynomials `f` and `g` or ``None``
References
==========
1. [Monagan00]_
2. [Brown71]_
"""
ring = f.ring
k = ring.ngens
if k == 1:
h = _gf_gcd(f, g, p).trunc_ground(p)
degh = h.degree()
if degh > degbound[0]:
return None
if degh < degbound[0]:
degbound[0] = degh
raise ModularGCDFailed
return h
degyf = f.degree(k-1)
degyg = g.degree(k-1)
contf, f = _primitive(f, p)
contg, g = _primitive(g, p)
conth = _gf_gcd(contf, contg, p) # polynomial in Z_p[y]
degcontf = contf.degree()
degcontg = contg.degree()
degconth = conth.degree()
if degconth > contbound[k-1]:
return None
if degconth < contbound[k-1]:
contbound[k-1] = degconth
raise ModularGCDFailed
lcf = _LC(f)
lcg = _LC(g)
delta = _gf_gcd(lcf, lcg, p) # polynomial in Z_p[y]
evaltest = delta
for i in range(k-1):
evaltest *= _gf_gcd(_LC(_swap(f, i)), _LC(_swap(g, i)), p)
degdelta = delta.degree()
N = min(degyf - degcontf, degyg - degcontg,
degbound[k-1] - contbound[k-1] + degdelta) + 1
if p < N:
return None
n = 0
d = 0
evalpoints = []
heval = []
points = list(range(p))
while points:
a = random.sample(points, 1)[0]
points.remove(a)
if not evaltest.evaluate(0, a) % p:
continue
deltaa = delta.evaluate(0, a) % p
fa = f.evaluate(k-1, a).trunc_ground(p)
ga = g.evaluate(k-1, a).trunc_ground(p)
# polynomials in Z_p[x_0, ..., x_{k-2}]
ha = _modgcd_multivariate_p(fa, ga, p, degbound, contbound)
if ha is None:
d += 1
if d > n:
return None
continue
if ha.is_ground:
h = conth.set_ring(ring).trunc_ground(p)
return h
ha = ha.mul_ground(deltaa).trunc_ground(p)
evalpoints.append(a)
heval.append(ha)
n += 1
if n == N:
h = _interpolate_multivariate(evalpoints, heval, ring, k-1, p)
h = _primitive(h, p)[1] * conth.set_ring(ring)
degyh = h.degree(k-1)
if degyh > degbound[k-1]:
return None
if degyh < degbound[k-1]:
degbound[k-1] = degyh
raise ModularGCDFailed
return h
return None
def modgcd_multivariate(f, g):
r"""
Compute the GCD of two polynomials in `\mathbb{Z}[x_0, \ldots, x_{k-1}]`
using a modular algorithm.
The algorithm computes the GCD of two multivariate integer polynomials
`f` and `g` by calculating the GCD in
`\mathbb{Z}_p[x_0, \ldots, x_{k-1}]` for suitable primes `p` and then
reconstructing the coefficients with the Chinese Remainder Theorem. To
compute the multivariate GCD over `\mathbb{Z}_p` the recursive
subroutine :func:`_modgcd_multivariate_p` is used. To verify the result in
`\mathbb{Z}[x_0, \ldots, x_{k-1}]`, trial division is done, but only for
candidates which are very likely the desired GCD.
Parameters
==========
f : PolyElement
multivariate integer polynomial
g : PolyElement
multivariate integer polynomial
Returns
=======
h : PolyElement
GCD of the polynomials `f` and `g`
cff : PolyElement
cofactor of `f`, i.e. `\frac{f}{h}`
cfg : PolyElement
cofactor of `g`, i.e. `\frac{g}{h}`
Examples
========
>>> from sympy.polys.modulargcd import modgcd_multivariate
>>> from sympy.polys import ring, ZZ
>>> R, x, y = ring("x, y", ZZ)
>>> f = x**2 - y**2
>>> g = x**2 + 2*x*y + y**2
>>> h, cff, cfg = modgcd_multivariate(f, g)
>>> h, cff, cfg
(x + y, x - y, x + y)
>>> cff * h == f
True
>>> cfg * h == g
True
>>> R, x, y, z = ring("x, y, z", ZZ)
>>> f = x*z**2 - y*z**2
>>> g = x**2*z + z
>>> h, cff, cfg = modgcd_multivariate(f, g)
>>> h, cff, cfg
(z, x*z - y*z, x**2 + 1)
>>> cff * h == f
True
>>> cfg * h == g
True
References
==========
1. [Monagan00]_
2. [Brown71]_
See also
========
_modgcd_multivariate_p
"""
assert f.ring == g.ring and f.ring.domain.is_ZZ
result = _trivial_gcd(f, g)
if result is not None:
return result
ring = f.ring
k = ring.ngens
# divide out integer content
cf, f = f.primitive()
cg, g = g.primitive()
ch = ring.domain.gcd(cf, cg)
gamma = ring.domain.gcd(f.LC, g.LC)
badprimes = ring.domain.one
for i in range(k):
badprimes *= ring.domain.gcd(_swap(f, i).LC, _swap(g, i).LC)
degbound = [min(fdeg, gdeg) for fdeg, gdeg in zip(f.degrees(), g.degrees())]
contbound = list(degbound)
m = 1
p = 1
while True:
p = nextprime(p)
while badprimes % p == 0:
p = nextprime(p)
fp = f.trunc_ground(p)
gp = g.trunc_ground(p)
try:
# monic GCD of fp, gp in Z_p[x_0, ..., x_{k-2}, y]
hp = _modgcd_multivariate_p(fp, gp, p, degbound, contbound)
except ModularGCDFailed:
m = 1
continue
if hp is None:
continue
hp = hp.mul_ground(gamma).trunc_ground(p)
if m == 1:
m = p
hlastm = hp
continue
hm = _chinese_remainder_reconstruction_multivariate(hp, hlastm, p, m)
m *= p
if not hm == hlastm:
hlastm = hm
continue
h = hm.primitive()[1]
fquo, frem = f.div(h)
gquo, grem = g.div(h)
if not frem and not grem:
if h.LC < 0:
ch = -ch
h = h.mul_ground(ch)
cff = fquo.mul_ground(cf // ch)
cfg = gquo.mul_ground(cg // ch)
return h, cff, cfg
def _gf_div(f, g, p):
r"""
Compute `\frac f g` modulo `p` for two univariate polynomials over
`\mathbb Z_p`.
"""
ring = f.ring
densequo, denserem = gf_div(f.to_dense(), g.to_dense(), p, ring.domain)
return ring.from_dense(densequo), ring.from_dense(denserem)
def _rational_function_reconstruction(c, p, m):
r"""
Reconstruct a rational function `\frac a b` in `\mathbb Z_p(t)` from
.. math::
c = \frac a b \; \mathrm{mod} \, m,
where `c` and `m` are polynomials in `\mathbb Z_p[t]` and `m` has
positive degree.
The algorithm is based on the Euclidean Algorithm. In general, `m` is
not irreducible, so it is possible that `b` is not invertible modulo
`m`. In that case ``None`` is returned.
Parameters
==========
c : PolyElement
univariate polynomial in `\mathbb Z[t]`
p : Integer
prime number
m : PolyElement
modulus, not necessarily irreducible
Returns
=======
frac : FracElement
either `\frac a b` in `\mathbb Z(t)` or ``None``
References
==========
1. [Hoeij04]_
"""
ring = c.ring
domain = ring.domain
M = m.degree()
N = M // 2
D = M - N - 1
r0, s0 = m, ring.zero
r1, s1 = c, ring.one
while r1.degree() > N:
quo = _gf_div(r0, r1, p)[0]
r0, r1 = r1, (r0 - quo*r1).trunc_ground(p)
s0, s1 = s1, (s0 - quo*s1).trunc_ground(p)
a, b = r1, s1
if b.degree() > D or _gf_gcd(b, m, p) != 1:
return None
lc = b.LC
if lc != 1:
lcinv = domain.invert(lc, p)
a = a.mul_ground(lcinv).trunc_ground(p)
b = b.mul_ground(lcinv).trunc_ground(p)
field = ring.to_field()
return field(a) / field(b)
def _rational_reconstruction_func_coeffs(hm, p, m, ring, k):
r"""
Reconstruct every coefficient `c_h` of a polynomial `h` in
`\mathbb Z_p(t_k)[t_1, \ldots, t_{k-1}][x, z]` from the corresponding
coefficient `c_{h_m}` of a polynomial `h_m` in
`\mathbb Z_p[t_1, \ldots, t_k][x, z] \cong \mathbb Z_p[t_k][t_1, \ldots, t_{k-1}][x, z]`
such that
.. math::
c_{h_m} = c_h \; \mathrm{mod} \, m,
where `m \in \mathbb Z_p[t]`.
The reconstruction is based on the Euclidean Algorithm. In general, `m`
is not irreducible, so it is possible that this fails for some
coefficient. In that case ``None`` is returned.
Parameters
==========
hm : PolyElement
polynomial in `\mathbb Z[t_1, \ldots, t_k][x, z]`
p : Integer
prime number, modulus of `\mathbb Z_p`
m : PolyElement
modulus, polynomial in `\mathbb Z[t]`, not necessarily irreducible
ring : PolyRing
`\mathbb Z(t_k)[t_1, \ldots, t_{k-1}][x, z]`, `h` will be an
element of this ring
k : Integer
index of the parameter `t_k` which will be reconstructed
Returns
=======
h : PolyElement
reconstructed polynomial in
`\mathbb Z(t_k)[t_1, \ldots, t_{k-1}][x, z]` or ``None``
See also
========
_rational_function_reconstruction
"""
h = ring.zero
for monom, coeff in hm.iterterms():
if k == 0:
coeffh = _rational_function_reconstruction(coeff, p, m)
if not coeffh:
return None
else:
coeffh = ring.domain.zero
for mon, c in coeff.drop_to_ground(k).iterterms():
ch = _rational_function_reconstruction(c, p, m)
if not ch:
return None
coeffh[mon] = ch
h[monom] = coeffh
return h
def _gf_gcdex(f, g, p):
r"""
Extended Euclidean Algorithm for two univariate polynomials over
`\mathbb Z_p`.
Returns polynomials `s, t` and `h`, such that `h` is the GCD of `f` and
`g` and `sf + tg = h \; \mathrm{mod} \, p`.
"""
ring = f.ring
s, t, h = gf_gcdex(f.to_dense(), g.to_dense(), p, ring.domain)
return ring.from_dense(s), ring.from_dense(t), ring.from_dense(h)
def _trunc(f, minpoly, p):
r"""
Compute the reduced representation of a polynomial `f` in
`\mathbb Z_p[z] / (\check m_{\alpha}(z))[x]`
Parameters
==========
f : PolyElement
polynomial in `\mathbb Z[x, z]`
minpoly : PolyElement
polynomial `\check m_{\alpha} \in \mathbb Z[z]`, not necessarily
irreducible
p : Integer
prime number, modulus of `\mathbb Z_p`
Returns
=======
ftrunc : PolyElement
polynomial in `\mathbb Z[x, z]`, reduced modulo
`\check m_{\alpha}(z)` and `p`
"""
ring = f.ring
minpoly = minpoly.set_ring(ring)
p_ = ring.ground_new(p)
return f.trunc_ground(p).rem([minpoly, p_]).trunc_ground(p)
def _euclidean_algorithm(f, g, minpoly, p):
r"""
Compute the monic GCD of two univariate polynomials in
`\mathbb{Z}_p[z]/(\check m_{\alpha}(z))[x]` with the Euclidean
Algorithm.
In general, `\check m_{\alpha}(z)` is not irreducible, so it is possible
that some leading coefficient is not invertible modulo
`\check m_{\alpha}(z)`. In that case ``None`` is returned.
Parameters
==========
f, g : PolyElement
polynomials in `\mathbb Z[x, z]`
minpoly : PolyElement
polynomial in `\mathbb Z[z]`, not necessarily irreducible
p : Integer
prime number, modulus of `\mathbb Z_p`
Returns
=======
h : PolyElement
GCD of `f` and `g` in `\mathbb Z[z, x]` or ``None``, coefficients
are in `\left[ -\frac{p-1} 2, \frac{p-1} 2 \right]`
"""
ring = f.ring
f = _trunc(f, minpoly, p)
g = _trunc(g, minpoly, p)
while g:
rem = f
deg = g.degree(0) # degree in x
lcinv, _, gcd = _gf_gcdex(ring.dmp_LC(g), minpoly, p)
if not gcd == 1:
return None
while True:
degrem = rem.degree(0) # degree in x
if degrem < deg:
break
quo = (lcinv * ring.dmp_LC(rem)).set_ring(ring)
rem = _trunc(rem - g.mul_monom((degrem - deg, 0))*quo, minpoly, p)
f = g
g = rem
lcfinv = _gf_gcdex(ring.dmp_LC(f), minpoly, p)[0].set_ring(ring)
return _trunc(f * lcfinv, minpoly, p)
def _trial_division(f, h, minpoly, p=None):
r"""
Check if `h` divides `f` in
`\mathbb K[t_1, \ldots, t_k][z]/(m_{\alpha}(z))`, where `\mathbb K` is
either `\mathbb Q` or `\mathbb Z_p`.
This algorithm is based on pseudo division and does not use any
fractions. By default `\mathbb K` is `\mathbb Q`, if a prime number `p`
is given, `\mathbb Z_p` is chosen instead.
Parameters
==========
f, h : PolyElement
polynomials in `\mathbb Z[t_1, \ldots, t_k][x, z]`
minpoly : PolyElement
polynomial `m_{\alpha}(z)` in `\mathbb Z[t_1, \ldots, t_k][z]`
p : Integer or None
if `p` is given, `\mathbb K` is set to `\mathbb Z_p` instead of
`\mathbb Q`, default is ``None``
Returns
=======
rem : PolyElement
remainder of `\frac f h`
References
==========
.. [1] [Hoeij02]_
"""
ring = f.ring
zxring = ring.clone(symbols=(ring.symbols[1], ring.symbols[0]))
minpoly = minpoly.set_ring(ring)
rem = f
degrem = rem.degree()
degh = h.degree()
degm = minpoly.degree(1)
lch = _LC(h).set_ring(ring)
lcm = minpoly.LC
while rem and degrem >= degh:
# polynomial in Z[t_1, ..., t_k][z]
lcrem = _LC(rem).set_ring(ring)
rem = rem*lch - h.mul_monom((degrem - degh, 0))*lcrem
if p:
rem = rem.trunc_ground(p)
degrem = rem.degree(1)
while rem and degrem >= degm:
# polynomial in Z[t_1, ..., t_k][x]
lcrem = _LC(rem.set_ring(zxring)).set_ring(ring)
rem = rem.mul_ground(lcm) - minpoly.mul_monom((0, degrem - degm))*lcrem
if p:
rem = rem.trunc_ground(p)
degrem = rem.degree(1)
degrem = rem.degree()
return rem
def _evaluate_ground(f, i, a):
r"""
Evaluate a polynomial `f` at `a` in the `i`-th variable of the ground
domain.
"""
ring = f.ring.clone(domain=f.ring.domain.ring.drop(i))
fa = ring.zero
for monom, coeff in f.iterterms():
fa[monom] = coeff.evaluate(i, a)
return fa
def _func_field_modgcd_p(f, g, minpoly, p):
r"""
Compute the GCD of two polynomials `f` and `g` in
`\mathbb Z_p(t_1, \ldots, t_k)[z]/(\check m_\alpha(z))[x]`.
The algorithm reduces the problem step by step by evaluating the
polynomials `f` and `g` at `t_k = a` for suitable `a \in \mathbb Z_p`
and then calls itself recursively to compute the GCD in
`\mathbb Z_p(t_1, \ldots, t_{k-1})[z]/(\check m_\alpha(z))[x]`. If these
recursive calls are successful, the GCD over `k` variables is
interpolated, otherwise the algorithm returns ``None``. After
interpolation, Rational Function Reconstruction is used to obtain the
correct coefficients. If this fails, a new evaluation point has to be
chosen, otherwise the desired polynomial is obtained by clearing
denominators. The result is verified with a fraction free trial
division.
Parameters
==========
f, g : PolyElement
polynomials in `\mathbb Z[t_1, \ldots, t_k][x, z]`
minpoly : PolyElement
polynomial in `\mathbb Z[t_1, \ldots, t_k][z]`, not necessarily
irreducible
p : Integer
prime number, modulus of `\mathbb Z_p`
Returns
=======
h : PolyElement
primitive associate in `\mathbb Z[t_1, \ldots, t_k][x, z]` of the
GCD of the polynomials `f` and `g` or ``None``, coefficients are
in `\left[ -\frac{p-1} 2, \frac{p-1} 2 \right]`
References
==========
1. [Hoeij04]_
"""
ring = f.ring
domain = ring.domain # Z[t_1, ..., t_k]
if isinstance(domain, PolynomialRing):
k = domain.ngens
else:
return _euclidean_algorithm(f, g, minpoly, p)
if k == 1:
qdomain = domain.ring.to_field()
else:
qdomain = domain.ring.drop_to_ground(k - 1)
qdomain = qdomain.clone(domain=qdomain.domain.ring.to_field())
qring = ring.clone(domain=qdomain) # = Z(t_k)[t_1, ..., t_{k-1}][x, z]
n = 1
d = 1
# polynomial in Z_p[t_1, ..., t_k][z]
gamma = ring.dmp_LC(f) * ring.dmp_LC(g)
# polynomial in Z_p[t_1, ..., t_k]
delta = minpoly.LC
evalpoints = []
heval = []
LMlist = []
points = list(range(p))
while points:
a = random.sample(points, 1)[0]
points.remove(a)
if k == 1:
test = delta.evaluate(k-1, a) % p == 0
else:
test = delta.evaluate(k-1, a).trunc_ground(p) == 0
if test:
continue
gammaa = _evaluate_ground(gamma, k-1, a)
minpolya = _evaluate_ground(minpoly, k-1, a)
if gammaa.rem([minpolya, gammaa.ring(p)]) == 0:
continue
fa = _evaluate_ground(f, k-1, a)
ga = _evaluate_ground(g, k-1, a)
# polynomial in Z_p[x, t_1, ..., t_{k-1}, z]/(minpoly)
ha = _func_field_modgcd_p(fa, ga, minpolya, p)
if ha is None:
d += 1
if d > n:
return None
continue
if ha == 1:
return ha
LM = [ha.degree()] + [0]*(k-1)
if k > 1:
for monom, coeff in ha.iterterms():
if monom[0] == LM[0] and coeff.LM > tuple(LM[1:]):
LM[1:] = coeff.LM
evalpoints_a = [a]
heval_a = [ha]
if k == 1:
m = qring.domain.get_ring().one
else:
m = qring.domain.domain.get_ring().one
t = m.ring.gens[0]
for b, hb, LMhb in zip(evalpoints, heval, LMlist):
if LMhb == LM:
evalpoints_a.append(b)
heval_a.append(hb)
m *= (t - b)
m = m.trunc_ground(p)
evalpoints.append(a)
heval.append(ha)
LMlist.append(LM)
n += 1
# polynomial in Z_p[t_1, ..., t_k][x, z]
h = _interpolate_multivariate(evalpoints_a, heval_a, ring, k-1, p, ground=True)
# polynomial in Z_p(t_k)[t_1, ..., t_{k-1}][x, z]
h = _rational_reconstruction_func_coeffs(h, p, m, qring, k-1)
if h is None:
continue
if k == 1:
dom = qring.domain.field
den = dom.ring.one
for coeff in h.itercoeffs():
den = dom.ring.from_dense(gf_lcm(den.to_dense(), coeff.denom.to_dense(),
p, dom.domain))
else:
dom = qring.domain.domain.field
den = dom.ring.one
for coeff in h.itercoeffs():
for c in coeff.itercoeffs():
den = dom.ring.from_dense(gf_lcm(den.to_dense(), c.denom.to_dense(),
p, dom.domain))
den = qring.domain_new(den.trunc_ground(p))
h = ring(h.mul_ground(den).as_expr()).trunc_ground(p)
if not _trial_division(f, h, minpoly, p) and not _trial_division(g, h, minpoly, p):
return h
return None
def _integer_rational_reconstruction(c, m, domain):
r"""
Reconstruct a rational number `\frac a b` from
.. math::
c = \frac a b \; \mathrm{mod} \, m,
where `c` and `m` are integers.
The algorithm is based on the Euclidean Algorithm. In general, `m` is
not a prime number, so it is possible that `b` is not invertible modulo
`m`. In that case ``None`` is returned.
Parameters
==========
c : Integer
`c = \frac a b \; \mathrm{mod} \, m`
m : Integer
modulus, not necessarily prime
domain : IntegerRing
`a, b, c` are elements of ``domain``
Returns
=======
frac : Rational
either `\frac a b` in `\mathbb Q` or ``None``
References
==========
1. [Wang81]_
"""
if c < 0:
c += m
r0, s0 = m, domain.zero
r1, s1 = c, domain.one
bound = sqrt(m / 2) # still correct if replaced by ZZ.sqrt(m // 2) ?
while int(r1) >= bound:
quo = r0 // r1
r0, r1 = r1, r0 - quo*r1
s0, s1 = s1, s0 - quo*s1
if abs(int(s1)) >= bound:
return None
if s1 < 0:
a, b = -r1, -s1
elif s1 > 0:
a, b = r1, s1
else:
return None
field = domain.get_field()
return field(a) / field(b)
def _rational_reconstruction_int_coeffs(hm, m, ring):
r"""
Reconstruct every rational coefficient `c_h` of a polynomial `h` in
`\mathbb Q[t_1, \ldots, t_k][x, z]` from the corresponding integer
coefficient `c_{h_m}` of a polynomial `h_m` in
`\mathbb Z[t_1, \ldots, t_k][x, z]` such that
.. math::
c_{h_m} = c_h \; \mathrm{mod} \, m,
where `m \in \mathbb Z`.
The reconstruction is based on the Euclidean Algorithm. In general,
`m` is not a prime number, so it is possible that this fails for some
coefficient. In that case ``None`` is returned.
Parameters
==========
hm : PolyElement
polynomial in `\mathbb Z[t_1, \ldots, t_k][x, z]`
m : Integer
modulus, not necessarily prime
ring : PolyRing
`\mathbb Q[t_1, \ldots, t_k][x, z]`, `h` will be an element of this
ring
Returns
=======
h : PolyElement
reconstructed polynomial in `\mathbb Q[t_1, \ldots, t_k][x, z]` or
``None``
See also
========
_integer_rational_reconstruction
"""
h = ring.zero
if isinstance(ring.domain, PolynomialRing):
reconstruction = _rational_reconstruction_int_coeffs
domain = ring.domain.ring
else:
reconstruction = _integer_rational_reconstruction
domain = hm.ring.domain
for monom, coeff in hm.iterterms():
coeffh = reconstruction(coeff, m, domain)
if not coeffh:
return None
h[monom] = coeffh
return h
def _func_field_modgcd_m(f, g, minpoly):
r"""
Compute the GCD of two polynomials in
`\mathbb Q(t_1, \ldots, t_k)[z]/(m_{\alpha}(z))[x]` using a modular
algorithm.
The algorithm computes the GCD of two polynomials `f` and `g` by
calculating the GCD in
`\mathbb Z_p(t_1, \ldots, t_k)[z] / (\check m_{\alpha}(z))[x]` for
suitable primes `p` and the primitive associate `\check m_{\alpha}(z)`
of `m_{\alpha}(z)`. Then the coefficients are reconstructed with the
Chinese Remainder Theorem and Rational Reconstruction. To compute the
GCD over `\mathbb Z_p(t_1, \ldots, t_k)[z] / (\check m_{\alpha})[x]`,
the recursive subroutine ``_func_field_modgcd_p`` is used. To verify the
result in `\mathbb Q(t_1, \ldots, t_k)[z] / (m_{\alpha}(z))[x]`, a
fraction free trial division is used.
Parameters
==========
f, g : PolyElement
polynomials in `\mathbb Z[t_1, \ldots, t_k][x, z]`
minpoly : PolyElement
irreducible polynomial in `\mathbb Z[t_1, \ldots, t_k][z]`
Returns
=======
h : PolyElement
the primitive associate in `\mathbb Z[t_1, \ldots, t_k][x, z]` of
the GCD of `f` and `g`
Examples
========
>>> from sympy.polys.modulargcd import _func_field_modgcd_m
>>> from sympy.polys import ring, ZZ
>>> R, x, z = ring('x, z', ZZ)
>>> minpoly = (z**2 - 2).drop(0)
>>> f = x**2 + 2*x*z + 2
>>> g = x + z
>>> _func_field_modgcd_m(f, g, minpoly)
x + z
>>> D, t = ring('t', ZZ)
>>> R, x, z = ring('x, z', D)
>>> minpoly = (z**2-3).drop(0)
>>> f = x**2 + (t + 1)*x*z + 3*t
>>> g = x*z + 3*t
>>> _func_field_modgcd_m(f, g, minpoly)
x + t*z
References
==========
1. [Hoeij04]_
See also
========
_func_field_modgcd_p
"""
ring = f.ring
domain = ring.domain
if isinstance(domain, PolynomialRing):
k = domain.ngens
QQdomain = domain.ring.clone(domain=domain.domain.get_field())
QQring = ring.clone(domain=QQdomain)
else:
k = 0
QQring = ring.clone(domain=ring.domain.get_field())
cf, f = f.primitive()
cg, g = g.primitive()
# polynomial in Z[t_1, ..., t_k][z]
gamma = ring.dmp_LC(f) * ring.dmp_LC(g)
# polynomial in Z[t_1, ..., t_k]
delta = minpoly.LC
p = 1
primes = []
hplist = []
LMlist = []
while True:
p = nextprime(p)
if gamma.trunc_ground(p) == 0:
continue
if k == 0:
test = (delta % p == 0)
else:
test = (delta.trunc_ground(p) == 0)
if test:
continue
fp = f.trunc_ground(p)
gp = g.trunc_ground(p)
minpolyp = minpoly.trunc_ground(p)
hp = _func_field_modgcd_p(fp, gp, minpolyp, p)
if hp is None:
continue
if hp == 1:
return ring.one
LM = [hp.degree()] + [0]*k
if k > 0:
for monom, coeff in hp.iterterms():
if monom[0] == LM[0] and coeff.LM > tuple(LM[1:]):
LM[1:] = coeff.LM
hm = hp
m = p
for q, hq, LMhq in zip(primes, hplist, LMlist):
if LMhq == LM:
hm = _chinese_remainder_reconstruction_multivariate(hq, hm, q, m)
m *= q
primes.append(p)
hplist.append(hp)
LMlist.append(LM)
hm = _rational_reconstruction_int_coeffs(hm, m, QQring)
if hm is None:
continue
if k == 0:
h = hm.clear_denoms()[1]
else:
den = domain.domain.one
for coeff in hm.itercoeffs():
den = domain.domain.lcm(den, coeff.clear_denoms()[0])
h = hm.mul_ground(den)
# convert back to Z[t_1, ..., t_k][x, z] from Q[t_1, ..., t_k][x, z]
h = h.set_ring(ring)
h = h.primitive()[1]
if not (_trial_division(f.mul_ground(cf), h, minpoly) or
_trial_division(g.mul_ground(cg), h, minpoly)):
return h
def _to_ZZ_poly(f, ring):
r"""
Compute an associate of a polynomial
`f \in \mathbb Q(\alpha)[x_0, \ldots, x_{n-1}]` in
`\mathbb Z[x_1, \ldots, x_{n-1}][z] / (\check m_{\alpha}(z))[x_0]`,
where `\check m_{\alpha}(z) \in \mathbb Z[z]` is the primitive associate
of the minimal polynomial `m_{\alpha}(z)` of `\alpha` over
`\mathbb Q`.
Parameters
==========
f : PolyElement
polynomial in `\mathbb Q(\alpha)[x_0, \ldots, x_{n-1}]`
ring : PolyRing
`\mathbb Z[x_1, \ldots, x_{n-1}][x_0, z]`
Returns
=======
f_ : PolyElement
associate of `f` in
`\mathbb Z[x_1, \ldots, x_{n-1}][x_0, z]`
"""
f_ = ring.zero
if isinstance(ring.domain, PolynomialRing):
domain = ring.domain.domain
else:
domain = ring.domain
den = domain.one
for coeff in f.itercoeffs():
for c in coeff.to_list():
if c:
den = domain.lcm(den, c.denominator)
for monom, coeff in f.iterterms():
coeff = coeff.to_list()
m = ring.domain.one
if isinstance(ring.domain, PolynomialRing):
m = m.mul_monom(monom[1:])
n = len(coeff)
for i in range(n):
if coeff[i]:
c = domain.convert(coeff[i] * den) * m
if (monom[0], n-i-1) not in f_:
f_[(monom[0], n-i-1)] = c
else:
f_[(monom[0], n-i-1)] += c
return f_
def _to_ANP_poly(f, ring):
r"""
Convert a polynomial
`f \in \mathbb Z[x_1, \ldots, x_{n-1}][z]/(\check m_{\alpha}(z))[x_0]`
to a polynomial in `\mathbb Q(\alpha)[x_0, \ldots, x_{n-1}]`,
where `\check m_{\alpha}(z) \in \mathbb Z[z]` is the primitive associate
of the minimal polynomial `m_{\alpha}(z)` of `\alpha` over
`\mathbb Q`.
Parameters
==========
f : PolyElement
polynomial in `\mathbb Z[x_1, \ldots, x_{n-1}][x_0, z]`
ring : PolyRing
`\mathbb Q(\alpha)[x_0, \ldots, x_{n-1}]`
Returns
=======
f_ : PolyElement
polynomial in `\mathbb Q(\alpha)[x_0, \ldots, x_{n-1}]`
"""
domain = ring.domain
f_ = ring.zero
if isinstance(f.ring.domain, PolynomialRing):
for monom, coeff in f.iterterms():
for mon, coef in coeff.iterterms():
m = (monom[0],) + mon
c = domain([domain.domain(coef)] + [0]*monom[1])
if m not in f_:
f_[m] = c
else:
f_[m] += c
else:
for monom, coeff in f.iterterms():
m = (monom[0],)
c = domain([domain.domain(coeff)] + [0]*monom[1])
if m not in f_:
f_[m] = c
else:
f_[m] += c
return f_
def _minpoly_from_dense(minpoly, ring):
r"""
Change representation of the minimal polynomial from ``DMP`` to
``PolyElement`` for a given ring.
"""
minpoly_ = ring.zero
for monom, coeff in minpoly.terms():
minpoly_[monom] = ring.domain(coeff)
return minpoly_
def _primitive_in_x0(f):
r"""
Compute the content in `x_0` and the primitive part of a polynomial `f`
in
`\mathbb Q(\alpha)[x_0, x_1, \ldots, x_{n-1}] \cong \mathbb Q(\alpha)[x_1, \ldots, x_{n-1}][x_0]`.
"""
fring = f.ring
ring = fring.drop_to_ground(*range(1, fring.ngens))
dom = ring.domain.ring
f_ = ring(f.as_expr())
cont = dom.zero
for coeff in f_.itercoeffs():
cont = func_field_modgcd(cont, coeff)[0]
if cont == dom.one:
return cont, f
return cont, f.quo(cont.set_ring(fring))
# TODO: add support for algebraic function fields
def func_field_modgcd(f, g):
r"""
Compute the GCD of two polynomials `f` and `g` in
`\mathbb Q(\alpha)[x_0, \ldots, x_{n-1}]` using a modular algorithm.
The algorithm first computes the primitive associate
`\check m_{\alpha}(z)` of the minimal polynomial `m_{\alpha}` in
`\mathbb{Z}[z]` and the primitive associates of `f` and `g` in
`\mathbb{Z}[x_1, \ldots, x_{n-1}][z]/(\check m_{\alpha})[x_0]`. Then it
computes the GCD in
`\mathbb Q(x_1, \ldots, x_{n-1})[z]/(m_{\alpha}(z))[x_0]`.
This is done by calculating the GCD in
`\mathbb{Z}_p(x_1, \ldots, x_{n-1})[z]/(\check m_{\alpha}(z))[x_0]` for
suitable primes `p` and then reconstructing the coefficients with the
Chinese Remainder Theorem and Rational Reconstuction. The GCD over
`\mathbb{Z}_p(x_1, \ldots, x_{n-1})[z]/(\check m_{\alpha}(z))[x_0]` is
computed with a recursive subroutine, which evaluates the polynomials at
`x_{n-1} = a` for suitable evaluation points `a \in \mathbb Z_p` and
then calls itself recursively until the ground domain does no longer
contain any parameters. For
`\mathbb{Z}_p[z]/(\check m_{\alpha}(z))[x_0]` the Euclidean Algorithm is
used. The results of those recursive calls are then interpolated and
Rational Function Reconstruction is used to obtain the correct
coefficients. The results, both in
`\mathbb Q(x_1, \ldots, x_{n-1})[z]/(m_{\alpha}(z))[x_0]` and
`\mathbb{Z}_p(x_1, \ldots, x_{n-1})[z]/(\check m_{\alpha}(z))[x_0]`, are
verified by a fraction free trial division.
Apart from the above GCD computation some GCDs in
`\mathbb Q(\alpha)[x_1, \ldots, x_{n-1}]` have to be calculated,
because treating the polynomials as univariate ones can result in
a spurious content of the GCD. For this ``func_field_modgcd`` is
called recursively.
Parameters
==========
f, g : PolyElement
polynomials in `\mathbb Q(\alpha)[x_0, \ldots, x_{n-1}]`
Returns
=======
h : PolyElement
monic GCD of the polynomials `f` and `g`
cff : PolyElement
cofactor of `f`, i.e. `\frac f h`
cfg : PolyElement
cofactor of `g`, i.e. `\frac g h`
Examples
========
>>> from sympy.polys.modulargcd import func_field_modgcd
>>> from sympy.polys import AlgebraicField, QQ, ring
>>> from sympy import sqrt
>>> A = AlgebraicField(QQ, sqrt(2))
>>> R, x = ring('x', A)
>>> f = x**2 - 2
>>> g = x + sqrt(2)
>>> h, cff, cfg = func_field_modgcd(f, g)
>>> h == x + sqrt(2)
True
>>> cff * h == f
True
>>> cfg * h == g
True
>>> R, x, y = ring('x, y', A)
>>> f = x**2 + 2*sqrt(2)*x*y + 2*y**2
>>> g = x + sqrt(2)*y
>>> h, cff, cfg = func_field_modgcd(f, g)
>>> h == x + sqrt(2)*y
True
>>> cff * h == f
True
>>> cfg * h == g
True
>>> f = x + sqrt(2)*y
>>> g = x + y
>>> h, cff, cfg = func_field_modgcd(f, g)
>>> h == R.one
True
>>> cff * h == f
True
>>> cfg * h == g
True
References
==========
1. [Hoeij04]_
"""
ring = f.ring
domain = ring.domain
n = ring.ngens
assert ring == g.ring and domain.is_Algebraic
result = _trivial_gcd(f, g)
if result is not None:
return result
z = Dummy('z')
ZZring = ring.clone(symbols=ring.symbols + (z,), domain=domain.domain.get_ring())
if n == 1:
f_ = _to_ZZ_poly(f, ZZring)
g_ = _to_ZZ_poly(g, ZZring)
minpoly = ZZring.drop(0).from_dense(domain.mod.to_list())
h = _func_field_modgcd_m(f_, g_, minpoly)
h = _to_ANP_poly(h, ring)
else:
# contx0f in Q(a)[x_1, ..., x_{n-1}], f in Q(a)[x_0, ..., x_{n-1}]
contx0f, f = _primitive_in_x0(f)
contx0g, g = _primitive_in_x0(g)
contx0h = func_field_modgcd(contx0f, contx0g)[0]
ZZring_ = ZZring.drop_to_ground(*range(1, n))
f_ = _to_ZZ_poly(f, ZZring_)
g_ = _to_ZZ_poly(g, ZZring_)
minpoly = _minpoly_from_dense(domain.mod, ZZring_.drop(0))
h = _func_field_modgcd_m(f_, g_, minpoly)
h = _to_ANP_poly(h, ring)
contx0h_, h = _primitive_in_x0(h)
h *= contx0h.set_ring(ring)
f *= contx0f.set_ring(ring)
g *= contx0g.set_ring(ring)
h = h.quo_ground(h.LC)
return h, f.quo(h), g.quo(h)
|