Spaces:
Sleeping
Sleeping
File size: 15,532 Bytes
6a86ad5 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 |
# Algorithms for computing the reduced row echelon form of a matrix.
#
# We need to choose carefully which algorithms to use depending on the domain,
# shape, and sparsity of the matrix as well as things like the bit count in the
# case of ZZ or QQ. This is important because the algorithms have different
# performance characteristics in the extremes of dense vs sparse.
#
# In all cases we use the sparse implementations but we need to choose between
# Gauss-Jordan elimination with division and fraction-free Gauss-Jordan
# elimination. For very sparse matrices over ZZ with low bit counts it is
# asymptotically faster to use Gauss-Jordan elimination with division. For
# dense matrices with high bit counts it is asymptotically faster to use
# fraction-free Gauss-Jordan.
#
# The most important thing is to get the extreme cases right because it can
# make a big difference. In between the extremes though we have to make a
# choice and here we use empirically determined thresholds based on timings
# with random sparse matrices.
#
# In the case of QQ we have to consider the denominators as well. If the
# denominators are small then it is faster to clear them and use fraction-free
# Gauss-Jordan over ZZ. If the denominators are large then it is faster to use
# Gauss-Jordan elimination with division over QQ.
#
# Timings for the various algorithms can be found at
#
# https://github.com/sympy/sympy/issues/25410
# https://github.com/sympy/sympy/pull/25443
from sympy.polys.domains import ZZ
from sympy.polys.matrices.sdm import SDM, sdm_irref, sdm_rref_den
from sympy.polys.matrices.ddm import DDM
from sympy.polys.matrices.dense import ddm_irref, ddm_irref_den
def _dm_rref(M, *, method='auto'):
"""
Compute the reduced row echelon form of a ``DomainMatrix``.
This function is the implementation of :meth:`DomainMatrix.rref`.
Chooses the best algorithm depending on the domain, shape, and sparsity of
the matrix as well as things like the bit count in the case of :ref:`ZZ` or
:ref:`QQ`. The result is returned over the field associated with the domain
of the Matrix.
See Also
========
sympy.polys.matrices.domainmatrix.DomainMatrix.rref
The ``DomainMatrix`` method that calls this function.
sympy.polys.matrices.rref._dm_rref_den
Alternative function for computing RREF with denominator.
"""
method, use_fmt = _dm_rref_choose_method(M, method, denominator=False)
M, old_fmt = _dm_to_fmt(M, use_fmt)
if method == 'GJ':
# Use Gauss-Jordan with division over the associated field.
Mf = _to_field(M)
M_rref, pivots = _dm_rref_GJ(Mf)
elif method == 'FF':
# Use fraction-free GJ over the current domain.
M_rref_f, den, pivots = _dm_rref_den_FF(M)
M_rref = _to_field(M_rref_f) / den
elif method == 'CD':
# Clear denominators and use fraction-free GJ in the associated ring.
_, Mr = M.clear_denoms_rowwise(convert=True)
M_rref_f, den, pivots = _dm_rref_den_FF(Mr)
M_rref = _to_field(M_rref_f) / den
else:
raise ValueError(f"Unknown method for rref: {method}")
M_rref, _ = _dm_to_fmt(M_rref, old_fmt)
# Invariants:
# - M_rref is in the same format (sparse or dense) as the input matrix.
# - M_rref is in the associated field domain and any denominator was
# divided in (so is implicitly 1 now).
return M_rref, pivots
def _dm_rref_den(M, *, keep_domain=True, method='auto'):
"""
Compute the reduced row echelon form of a ``DomainMatrix`` with denominator.
This function is the implementation of :meth:`DomainMatrix.rref_den`.
Chooses the best algorithm depending on the domain, shape, and sparsity of
the matrix as well as things like the bit count in the case of :ref:`ZZ` or
:ref:`QQ`. The result is returned over the same domain as the input matrix
unless ``keep_domain=False`` in which case the result might be over an
associated ring or field domain.
See Also
========
sympy.polys.matrices.domainmatrix.DomainMatrix.rref_den
The ``DomainMatrix`` method that calls this function.
sympy.polys.matrices.rref._dm_rref
Alternative function for computing RREF without denominator.
"""
method, use_fmt = _dm_rref_choose_method(M, method, denominator=True)
M, old_fmt = _dm_to_fmt(M, use_fmt)
if method == 'FF':
# Use fraction-free GJ over the current domain.
M_rref, den, pivots = _dm_rref_den_FF(M)
elif method == 'GJ':
# Use Gauss-Jordan with division over the associated field.
M_rref_f, pivots = _dm_rref_GJ(_to_field(M))
# Convert back to the ring?
if keep_domain and M_rref_f.domain != M.domain:
_, M_rref = M_rref_f.clear_denoms(convert=True)
if pivots:
den = M_rref[0, pivots[0]].element
else:
den = M_rref.domain.one
else:
# Possibly an associated field
M_rref = M_rref_f
den = M_rref.domain.one
elif method == 'CD':
# Clear denominators and use fraction-free GJ in the associated ring.
_, Mr = M.clear_denoms_rowwise(convert=True)
M_rref_r, den, pivots = _dm_rref_den_FF(Mr)
if keep_domain and M_rref_r.domain != M.domain:
# Convert back to the field
M_rref = _to_field(M_rref_r) / den
den = M.domain.one
else:
# Possibly an associated ring
M_rref = M_rref_r
if pivots:
den = M_rref[0, pivots[0]].element
else:
den = M_rref.domain.one
else:
raise ValueError(f"Unknown method for rref: {method}")
M_rref, _ = _dm_to_fmt(M_rref, old_fmt)
# Invariants:
# - M_rref is in the same format (sparse or dense) as the input matrix.
# - If keep_domain=True then M_rref and den are in the same domain as the
# input matrix
# - If keep_domain=False then M_rref might be in an associated ring or
# field domain but den is always in the same domain as M_rref.
return M_rref, den, pivots
def _dm_to_fmt(M, fmt):
"""Convert a matrix to the given format and return the old format."""
old_fmt = M.rep.fmt
if old_fmt == fmt:
pass
elif fmt == 'dense':
M = M.to_dense()
elif fmt == 'sparse':
M = M.to_sparse()
else:
raise ValueError(f'Unknown format: {fmt}') # pragma: no cover
return M, old_fmt
# These are the four basic implementations that we want to choose between:
def _dm_rref_GJ(M):
"""Compute RREF using Gauss-Jordan elimination with division."""
if M.rep.fmt == 'sparse':
return _dm_rref_GJ_sparse(M)
else:
return _dm_rref_GJ_dense(M)
def _dm_rref_den_FF(M):
"""Compute RREF using fraction-free Gauss-Jordan elimination."""
if M.rep.fmt == 'sparse':
return _dm_rref_den_FF_sparse(M)
else:
return _dm_rref_den_FF_dense(M)
def _dm_rref_GJ_sparse(M):
"""Compute RREF using sparse Gauss-Jordan elimination with division."""
M_rref_d, pivots, _ = sdm_irref(M.rep)
M_rref_sdm = SDM(M_rref_d, M.shape, M.domain)
pivots = tuple(pivots)
return M.from_rep(M_rref_sdm), pivots
def _dm_rref_GJ_dense(M):
"""Compute RREF using dense Gauss-Jordan elimination with division."""
partial_pivot = M.domain.is_RR or M.domain.is_CC
ddm = M.rep.to_ddm().copy()
pivots = ddm_irref(ddm, _partial_pivot=partial_pivot)
M_rref_ddm = DDM(ddm, M.shape, M.domain)
pivots = tuple(pivots)
return M.from_rep(M_rref_ddm.to_dfm_or_ddm()), pivots
def _dm_rref_den_FF_sparse(M):
"""Compute RREF using sparse fraction-free Gauss-Jordan elimination."""
M_rref_d, den, pivots = sdm_rref_den(M.rep, M.domain)
M_rref_sdm = SDM(M_rref_d, M.shape, M.domain)
pivots = tuple(pivots)
return M.from_rep(M_rref_sdm), den, pivots
def _dm_rref_den_FF_dense(M):
"""Compute RREF using sparse fraction-free Gauss-Jordan elimination."""
ddm = M.rep.to_ddm().copy()
den, pivots = ddm_irref_den(ddm, M.domain)
M_rref_ddm = DDM(ddm, M.shape, M.domain)
pivots = tuple(pivots)
return M.from_rep(M_rref_ddm.to_dfm_or_ddm()), den, pivots
def _dm_rref_choose_method(M, method, *, denominator=False):
"""Choose the fastest method for computing RREF for M."""
if method != 'auto':
if method.endswith('_dense'):
method = method[:-len('_dense')]
use_fmt = 'dense'
else:
use_fmt = 'sparse'
else:
# The sparse implementations are always faster
use_fmt = 'sparse'
K = M.domain
if K.is_ZZ:
method = _dm_rref_choose_method_ZZ(M, denominator=denominator)
elif K.is_QQ:
method = _dm_rref_choose_method_QQ(M, denominator=denominator)
elif K.is_RR or K.is_CC:
# TODO: Add partial pivot support to the sparse implementations.
method = 'GJ'
use_fmt = 'dense'
elif K.is_EX and M.rep.fmt == 'dense' and not denominator:
# Do not switch to the sparse implementation for EX because the
# domain does not have proper canonicalization and the sparse
# implementation gives equivalent but non-identical results over EX
# from performing arithmetic in a different order. Specifically
# test_issue_23718 ends up getting a more complicated expression
# when using the sparse implementation. Probably the best fix for
# this is something else but for now we stick with the dense
# implementation for EX if the matrix is already dense.
method = 'GJ'
use_fmt = 'dense'
else:
# This is definitely suboptimal. More work is needed to determine
# the best method for computing RREF over different domains.
if denominator:
method = 'FF'
else:
method = 'GJ'
return method, use_fmt
def _dm_rref_choose_method_QQ(M, *, denominator=False):
"""Choose the fastest method for computing RREF over QQ."""
# The same sorts of considerations apply here as in the case of ZZ. Here
# though a new more significant consideration is what sort of denominators
# we have and what to do with them so we focus on that.
# First compute the density. This is the average number of non-zero entries
# per row but only counting rows that have at least one non-zero entry
# since RREF can ignore fully zero rows.
density, _, ncols = _dm_row_density(M)
# For sparse matrices use Gauss-Jordan elimination over QQ regardless.
if density < min(5, ncols/2):
return 'GJ'
# Compare the bit-length of the lcm of the denominators to the bit length
# of the numerators.
#
# The threshold here is empirical: we prefer rref over QQ if clearing
# denominators would result in a numerator matrix having 5x the bit size of
# the current numerators.
numers, denoms = _dm_QQ_numers_denoms(M)
numer_bits = max([n.bit_length() for n in numers], default=1)
denom_lcm = ZZ.one
for d in denoms:
denom_lcm = ZZ.lcm(denom_lcm, d)
if denom_lcm.bit_length() > 5*numer_bits:
return 'GJ'
# If we get here then the matrix is dense and the lcm of the denominators
# is not too large compared to the numerators. For particularly small
# denominators it is fastest just to clear them and use fraction-free
# Gauss-Jordan over ZZ. With very small denominators this is a little
# faster than using rref_den over QQ but there is an intermediate regime
# where rref_den over QQ is significantly faster. The small denominator
# case is probably very common because small fractions like 1/2 or 1/3 are
# often seen in user inputs.
if denom_lcm.bit_length() < 50:
return 'CD'
else:
return 'FF'
def _dm_rref_choose_method_ZZ(M, *, denominator=False):
"""Choose the fastest method for computing RREF over ZZ."""
# In the extreme of very sparse matrices and low bit counts it is faster to
# use Gauss-Jordan elimination over QQ rather than fraction-free
# Gauss-Jordan over ZZ. In the opposite extreme of dense matrices and high
# bit counts it is faster to use fraction-free Gauss-Jordan over ZZ. These
# two extreme cases need to be handled differently because they lead to
# different asymptotic complexities. In between these two extremes we need
# a threshold for deciding which method to use. This threshold is
# determined empirically by timing the two methods with random matrices.
# The disadvantage of using empirical timings is that future optimisations
# might change the relative speeds so this can easily become out of date.
# The main thing is to get the asymptotic complexity right for the extreme
# cases though so the precise value of the threshold is hopefully not too
# important.
# Empirically determined parameter.
PARAM = 10000
# First compute the density. This is the average number of non-zero entries
# per row but only counting rows that have at least one non-zero entry
# since RREF can ignore fully zero rows.
density, nrows_nz, ncols = _dm_row_density(M)
# For small matrices use QQ if more than half the entries are zero.
if nrows_nz < 10:
if density < ncols/2:
return 'GJ'
else:
return 'FF'
# These are just shortcuts for the formula below.
if density < 5:
return 'GJ'
elif density > 5 + PARAM/nrows_nz:
return 'FF' # pragma: no cover
# Maximum bitsize of any entry.
elements = _dm_elements(M)
bits = max([e.bit_length() for e in elements], default=1)
# Wideness parameter. This is 1 for square or tall matrices but >1 for wide
# matrices.
wideness = max(1, 2/3*ncols/nrows_nz)
max_density = (5 + PARAM/(nrows_nz*bits**2)) * wideness
if density < max_density:
return 'GJ'
else:
return 'FF'
def _dm_row_density(M):
"""Density measure for sparse matrices.
Defines the "density", ``d`` as the average number of non-zero entries per
row except ignoring rows that are fully zero. RREF can ignore fully zero
rows so they are excluded. By definition ``d >= 1`` except that we define
``d = 0`` for the zero matrix.
Returns ``(density, nrows_nz, ncols)`` where ``nrows_nz`` counts the number
of nonzero rows and ``ncols`` is the number of columns.
"""
# Uses the SDM dict-of-dicts representation.
ncols = M.shape[1]
rows_nz = M.rep.to_sdm().values()
if not rows_nz:
return 0, 0, ncols
else:
nrows_nz = len(rows_nz)
density = sum(map(len, rows_nz)) / nrows_nz
return density, nrows_nz, ncols
def _dm_elements(M):
"""Return nonzero elements of a DomainMatrix."""
elements, _ = M.to_flat_nz()
return elements
def _dm_QQ_numers_denoms(Mq):
"""Returns the numerators and denominators of a DomainMatrix over QQ."""
elements = _dm_elements(Mq)
numers = [e.numerator for e in elements]
denoms = [e.denominator for e in elements]
return numers, denoms
def _to_field(M):
"""Convert a DomainMatrix to a field if possible."""
K = M.domain
if K.has_assoc_Field:
return M.to_field()
else:
return M
|