Spaces:
Sleeping
Sleeping
File size: 13,148 Bytes
6a86ad5 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 |
'''Functions returning normal forms of matrices'''
from collections import defaultdict
from .domainmatrix import DomainMatrix
from .exceptions import DMDomainError, DMShapeError
from sympy.ntheory.modular import symmetric_residue
from sympy.polys.domains import QQ, ZZ
# TODO (future work):
# There are faster algorithms for Smith and Hermite normal forms, which
# we should implement. See e.g. the Kannan-Bachem algorithm:
# <https://www.researchgate.net/publication/220617516_Polynomial_Algorithms_for_Computing_the_Smith_and_Hermite_Normal_Forms_of_an_Integer_Matrix>
def smith_normal_form(m):
'''
Return the Smith Normal Form of a matrix `m` over the ring `domain`.
This will only work if the ring is a principal ideal domain.
Examples
========
>>> from sympy import ZZ
>>> from sympy.polys.matrices import DomainMatrix
>>> from sympy.polys.matrices.normalforms import smith_normal_form
>>> m = DomainMatrix([[ZZ(12), ZZ(6), ZZ(4)],
... [ZZ(3), ZZ(9), ZZ(6)],
... [ZZ(2), ZZ(16), ZZ(14)]], (3, 3), ZZ)
>>> print(smith_normal_form(m).to_Matrix())
Matrix([[1, 0, 0], [0, 10, 0], [0, 0, -30]])
'''
invs = invariant_factors(m)
smf = DomainMatrix.diag(invs, m.domain, m.shape)
return smf
def add_columns(m, i, j, a, b, c, d):
# replace m[:, i] by a*m[:, i] + b*m[:, j]
# and m[:, j] by c*m[:, i] + d*m[:, j]
for k in range(len(m)):
e = m[k][i]
m[k][i] = a*e + b*m[k][j]
m[k][j] = c*e + d*m[k][j]
def invariant_factors(m):
'''
Return the tuple of abelian invariants for a matrix `m`
(as in the Smith-Normal form)
References
==========
[1] https://en.wikipedia.org/wiki/Smith_normal_form#Algorithm
[2] https://web.archive.org/web/20200331143852/https://sierra.nmsu.edu/morandi/notes/SmithNormalForm.pdf
'''
domain = m.domain
if not domain.is_PID:
msg = "The matrix entries must be over a principal ideal domain"
raise ValueError(msg)
if 0 in m.shape:
return ()
rows, cols = shape = m.shape
m = list(m.to_dense().rep.to_ddm())
def add_rows(m, i, j, a, b, c, d):
# replace m[i, :] by a*m[i, :] + b*m[j, :]
# and m[j, :] by c*m[i, :] + d*m[j, :]
for k in range(cols):
e = m[i][k]
m[i][k] = a*e + b*m[j][k]
m[j][k] = c*e + d*m[j][k]
def clear_column(m):
# make m[1:, 0] zero by row and column operations
if m[0][0] == 0:
return m # pragma: nocover
pivot = m[0][0]
for j in range(1, rows):
if m[j][0] == 0:
continue
d, r = domain.div(m[j][0], pivot)
if r == 0:
add_rows(m, 0, j, 1, 0, -d, 1)
else:
a, b, g = domain.gcdex(pivot, m[j][0])
d_0 = domain.div(m[j][0], g)[0]
d_j = domain.div(pivot, g)[0]
add_rows(m, 0, j, a, b, d_0, -d_j)
pivot = g
return m
def clear_row(m):
# make m[0, 1:] zero by row and column operations
if m[0][0] == 0:
return m # pragma: nocover
pivot = m[0][0]
for j in range(1, cols):
if m[0][j] == 0:
continue
d, r = domain.div(m[0][j], pivot)
if r == 0:
add_columns(m, 0, j, 1, 0, -d, 1)
else:
a, b, g = domain.gcdex(pivot, m[0][j])
d_0 = domain.div(m[0][j], g)[0]
d_j = domain.div(pivot, g)[0]
add_columns(m, 0, j, a, b, d_0, -d_j)
pivot = g
return m
# permute the rows and columns until m[0,0] is non-zero if possible
ind = [i for i in range(rows) if m[i][0] != 0]
if ind and ind[0] != 0:
m[0], m[ind[0]] = m[ind[0]], m[0]
else:
ind = [j for j in range(cols) if m[0][j] != 0]
if ind and ind[0] != 0:
for row in m:
row[0], row[ind[0]] = row[ind[0]], row[0]
# make the first row and column except m[0,0] zero
while (any(m[0][i] != 0 for i in range(1,cols)) or
any(m[i][0] != 0 for i in range(1,rows))):
m = clear_column(m)
m = clear_row(m)
if 1 in shape:
invs = ()
else:
lower_right = DomainMatrix([r[1:] for r in m[1:]], (rows-1, cols-1), domain)
invs = invariant_factors(lower_right)
if m[0][0]:
result = [m[0][0]]
result.extend(invs)
# in case m[0] doesn't divide the invariants of the rest of the matrix
for i in range(len(result)-1):
if result[i] and domain.div(result[i+1], result[i])[1] != 0:
g = domain.gcd(result[i+1], result[i])
result[i+1] = domain.div(result[i], g)[0]*result[i+1]
result[i] = g
else:
break
else:
result = invs + (m[0][0],)
return tuple(result)
def _gcdex(a, b):
r"""
This supports the functions that compute Hermite Normal Form.
Explanation
===========
Let x, y be the coefficients returned by the extended Euclidean
Algorithm, so that x*a + y*b = g. In the algorithms for computing HNF,
it is critical that x, y not only satisfy the condition of being small
in magnitude -- namely that |x| <= |b|/g, |y| <- |a|/g -- but also that
y == 0 when a | b.
"""
x, y, g = ZZ.gcdex(a, b)
if a != 0 and b % a == 0:
y = 0
x = -1 if a < 0 else 1
return x, y, g
def _hermite_normal_form(A):
r"""
Compute the Hermite Normal Form of DomainMatrix *A* over :ref:`ZZ`.
Parameters
==========
A : :py:class:`~.DomainMatrix` over domain :ref:`ZZ`.
Returns
=======
:py:class:`~.DomainMatrix`
The HNF of matrix *A*.
Raises
======
DMDomainError
If the domain of the matrix is not :ref:`ZZ`.
References
==========
.. [1] Cohen, H. *A Course in Computational Algebraic Number Theory.*
(See Algorithm 2.4.5.)
"""
if not A.domain.is_ZZ:
raise DMDomainError('Matrix must be over domain ZZ.')
# We work one row at a time, starting from the bottom row, and working our
# way up.
m, n = A.shape
A = A.to_dense().rep.to_ddm().copy()
# Our goal is to put pivot entries in the rightmost columns.
# Invariant: Before processing each row, k should be the index of the
# leftmost column in which we have so far put a pivot.
k = n
for i in range(m - 1, -1, -1):
if k == 0:
# This case can arise when n < m and we've already found n pivots.
# We don't need to consider any more rows, because this is already
# the maximum possible number of pivots.
break
k -= 1
# k now points to the column in which we want to put a pivot.
# We want zeros in all entries to the left of the pivot column.
for j in range(k - 1, -1, -1):
if A[i][j] != 0:
# Replace cols j, k by lin combs of these cols such that, in row i,
# col j has 0, while col k has the gcd of their row i entries. Note
# that this ensures a nonzero entry in col k.
u, v, d = _gcdex(A[i][k], A[i][j])
r, s = A[i][k] // d, A[i][j] // d
add_columns(A, k, j, u, v, -s, r)
b = A[i][k]
# Do not want the pivot entry to be negative.
if b < 0:
add_columns(A, k, k, -1, 0, -1, 0)
b = -b
# The pivot entry will be 0 iff the row was 0 from the pivot col all the
# way to the left. In this case, we are still working on the same pivot
# col for the next row. Therefore:
if b == 0:
k += 1
# If the pivot entry is nonzero, then we want to reduce all entries to its
# right in the sense of the division algorithm, i.e. make them all remainders
# w.r.t. the pivot as divisor.
else:
for j in range(k + 1, n):
q = A[i][j] // b
add_columns(A, j, k, 1, -q, 0, 1)
# Finally, the HNF consists of those columns of A in which we succeeded in making
# a nonzero pivot.
return DomainMatrix.from_rep(A.to_dfm_or_ddm())[:, k:]
def _hermite_normal_form_modulo_D(A, D):
r"""
Perform the mod *D* Hermite Normal Form reduction algorithm on
:py:class:`~.DomainMatrix` *A*.
Explanation
===========
If *A* is an $m \times n$ matrix of rank $m$, having Hermite Normal Form
$W$, and if *D* is any positive integer known in advance to be a multiple
of $\det(W)$, then the HNF of *A* can be computed by an algorithm that
works mod *D* in order to prevent coefficient explosion.
Parameters
==========
A : :py:class:`~.DomainMatrix` over :ref:`ZZ`
$m \times n$ matrix, having rank $m$.
D : :ref:`ZZ`
Positive integer, known to be a multiple of the determinant of the
HNF of *A*.
Returns
=======
:py:class:`~.DomainMatrix`
The HNF of matrix *A*.
Raises
======
DMDomainError
If the domain of the matrix is not :ref:`ZZ`, or
if *D* is given but is not in :ref:`ZZ`.
DMShapeError
If the matrix has more rows than columns.
References
==========
.. [1] Cohen, H. *A Course in Computational Algebraic Number Theory.*
(See Algorithm 2.4.8.)
"""
if not A.domain.is_ZZ:
raise DMDomainError('Matrix must be over domain ZZ.')
if not ZZ.of_type(D) or D < 1:
raise DMDomainError('Modulus D must be positive element of domain ZZ.')
def add_columns_mod_R(m, R, i, j, a, b, c, d):
# replace m[:, i] by (a*m[:, i] + b*m[:, j]) % R
# and m[:, j] by (c*m[:, i] + d*m[:, j]) % R
for k in range(len(m)):
e = m[k][i]
m[k][i] = symmetric_residue((a * e + b * m[k][j]) % R, R)
m[k][j] = symmetric_residue((c * e + d * m[k][j]) % R, R)
W = defaultdict(dict)
m, n = A.shape
if n < m:
raise DMShapeError('Matrix must have at least as many columns as rows.')
A = A.to_dense().rep.to_ddm().copy()
k = n
R = D
for i in range(m - 1, -1, -1):
k -= 1
for j in range(k - 1, -1, -1):
if A[i][j] != 0:
u, v, d = _gcdex(A[i][k], A[i][j])
r, s = A[i][k] // d, A[i][j] // d
add_columns_mod_R(A, R, k, j, u, v, -s, r)
b = A[i][k]
if b == 0:
A[i][k] = b = R
u, v, d = _gcdex(b, R)
for ii in range(m):
W[ii][i] = u*A[ii][k] % R
if W[i][i] == 0:
W[i][i] = R
for j in range(i + 1, m):
q = W[i][j] // W[i][i]
add_columns(W, j, i, 1, -q, 0, 1)
R //= d
return DomainMatrix(W, (m, m), ZZ).to_dense()
def hermite_normal_form(A, *, D=None, check_rank=False):
r"""
Compute the Hermite Normal Form of :py:class:`~.DomainMatrix` *A* over
:ref:`ZZ`.
Examples
========
>>> from sympy import ZZ
>>> from sympy.polys.matrices import DomainMatrix
>>> from sympy.polys.matrices.normalforms import hermite_normal_form
>>> m = DomainMatrix([[ZZ(12), ZZ(6), ZZ(4)],
... [ZZ(3), ZZ(9), ZZ(6)],
... [ZZ(2), ZZ(16), ZZ(14)]], (3, 3), ZZ)
>>> print(hermite_normal_form(m).to_Matrix())
Matrix([[10, 0, 2], [0, 15, 3], [0, 0, 2]])
Parameters
==========
A : $m \times n$ ``DomainMatrix`` over :ref:`ZZ`.
D : :ref:`ZZ`, optional
Let $W$ be the HNF of *A*. If known in advance, a positive integer *D*
being any multiple of $\det(W)$ may be provided. In this case, if *A*
also has rank $m$, then we may use an alternative algorithm that works
mod *D* in order to prevent coefficient explosion.
check_rank : boolean, optional (default=False)
The basic assumption is that, if you pass a value for *D*, then
you already believe that *A* has rank $m$, so we do not waste time
checking it for you. If you do want this to be checked (and the
ordinary, non-modulo *D* algorithm to be used if the check fails), then
set *check_rank* to ``True``.
Returns
=======
:py:class:`~.DomainMatrix`
The HNF of matrix *A*.
Raises
======
DMDomainError
If the domain of the matrix is not :ref:`ZZ`, or
if *D* is given but is not in :ref:`ZZ`.
DMShapeError
If the mod *D* algorithm is used but the matrix has more rows than
columns.
References
==========
.. [1] Cohen, H. *A Course in Computational Algebraic Number Theory.*
(See Algorithms 2.4.5 and 2.4.8.)
"""
if not A.domain.is_ZZ:
raise DMDomainError('Matrix must be over domain ZZ.')
if D is not None and (not check_rank or A.convert_to(QQ).rank() == A.shape[0]):
return _hermite_normal_form_modulo_D(A, D)
else:
return _hermite_normal_form(A)
|