File size: 16,566 Bytes
6a86ad5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
from collections import defaultdict
from sympy.core.containers import Tuple
from sympy.core.singleton import S
from sympy.core.symbol import (Dummy, Symbol)
from sympy.functions.combinatorial.numbers import totient
from sympy.ntheory import n_order, is_primitive_root, is_quad_residue, \
    legendre_symbol, jacobi_symbol, primerange, sqrt_mod, \
    primitive_root, quadratic_residues, is_nthpow_residue, nthroot_mod, \
    sqrt_mod_iter, mobius, discrete_log, quadratic_congruence, \
    polynomial_congruence, sieve
from sympy.ntheory.residue_ntheory import _primitive_root_prime_iter, \
    _primitive_root_prime_power_iter, _primitive_root_prime_power2_iter, \
    _nthroot_mod_prime_power, _discrete_log_trial_mul, _discrete_log_shanks_steps, \
    _discrete_log_pollard_rho, _discrete_log_index_calculus, _discrete_log_pohlig_hellman, \
    _binomial_mod_prime_power, binomial_mod
from sympy.polys.domains import ZZ
from sympy.testing.pytest import raises
from sympy.core.random import randint, choice


def test_residue():
    assert n_order(2, 13) == 12
    assert [n_order(a, 7) for a in range(1, 7)] == \
           [1, 3, 6, 3, 6, 2]
    assert n_order(5, 17) == 16
    assert n_order(17, 11) == n_order(6, 11)
    assert n_order(101, 119) == 6
    assert n_order(11, (10**50 + 151)**2) == 10000000000000000000000000000000000000000000000030100000000000000000000000000000000000000000000022650
    raises(ValueError, lambda: n_order(6, 9))

    assert is_primitive_root(2, 7) is False
    assert is_primitive_root(3, 8) is False
    assert is_primitive_root(11, 14) is False
    assert is_primitive_root(12, 17) == is_primitive_root(29, 17)
    raises(ValueError, lambda: is_primitive_root(3, 6))

    for p in primerange(3, 100):
        li = list(_primitive_root_prime_iter(p))
        assert li[0] == min(li)
        for g in li:
            assert n_order(g, p) == p - 1
        assert len(li) == totient(totient(p))
        for e in range(1, 4):
            li_power = list(_primitive_root_prime_power_iter(p, e))
            li_power2 = list(_primitive_root_prime_power2_iter(p, e))
            assert len(li_power) == len(li_power2) == totient(totient(p**e))
    assert primitive_root(97) == 5
    assert n_order(primitive_root(97, False), 97) == totient(97)
    assert primitive_root(97**2) == 5
    assert n_order(primitive_root(97**2, False), 97**2) == totient(97**2)
    assert primitive_root(40487) == 5
    assert n_order(primitive_root(40487, False), 40487) == totient(40487)
    # note that primitive_root(40487) + 40487 = 40492 is a primitive root
    # of 40487**2, but it is not the smallest
    assert primitive_root(40487**2) == 10
    assert n_order(primitive_root(40487**2, False), 40487**2) == totient(40487**2)
    assert primitive_root(82) == 7
    assert n_order(primitive_root(82, False), 82) == totient(82)
    p = 10**50 + 151
    assert primitive_root(p) == 11
    assert n_order(primitive_root(p, False), p) == totient(p)
    assert primitive_root(2*p) == 11
    assert n_order(primitive_root(2*p, False), 2*p) == totient(2*p)
    assert primitive_root(p**2) == 11
    assert n_order(primitive_root(p**2, False), p**2) == totient(p**2)
    assert primitive_root(4 * 11) is None and primitive_root(4 * 11, False) is None
    assert primitive_root(15) is None and primitive_root(15, False) is None
    raises(ValueError, lambda: primitive_root(-3))

    assert is_quad_residue(3, 7) is False
    assert is_quad_residue(10, 13) is True
    assert is_quad_residue(12364, 139) == is_quad_residue(12364 % 139, 139)
    assert is_quad_residue(207, 251) is True
    assert is_quad_residue(0, 1) is True
    assert is_quad_residue(1, 1) is True
    assert is_quad_residue(0, 2) == is_quad_residue(1, 2) is True
    assert is_quad_residue(1, 4) is True
    assert is_quad_residue(2, 27) is False
    assert is_quad_residue(13122380800, 13604889600) is True
    assert [j for j in range(14) if is_quad_residue(j, 14)] == \
           [0, 1, 2, 4, 7, 8, 9, 11]
    raises(ValueError, lambda: is_quad_residue(1.1, 2))
    raises(ValueError, lambda: is_quad_residue(2, 0))

    assert quadratic_residues(S.One) == [0]
    assert quadratic_residues(1) == [0]
    assert quadratic_residues(12) == [0, 1, 4, 9]
    assert quadratic_residues(13) == [0, 1, 3, 4, 9, 10, 12]
    assert [len(quadratic_residues(i)) for i in range(1, 20)] == \
      [1, 2, 2, 2, 3, 4, 4, 3, 4, 6, 6, 4, 7, 8, 6, 4, 9, 8, 10]

    assert list(sqrt_mod_iter(6, 2)) == [0]
    assert sqrt_mod(3, 13) == 4
    assert sqrt_mod(3, -13) == 4
    assert sqrt_mod(6, 23) == 11
    assert sqrt_mod(345, 690) == 345
    assert sqrt_mod(67, 101) == None
    assert sqrt_mod(1020, 104729) == None

    for p in range(3, 100):
        d = defaultdict(list)
        for i in range(p):
            d[pow(i, 2, p)].append(i)
        for i in range(1, p):
            it = sqrt_mod_iter(i, p)
            v = sqrt_mod(i, p, True)
            if v:
                v = sorted(v)
                assert d[i] == v
            else:
                assert not d[i]

    assert sqrt_mod(9, 27, True) == [3, 6, 12, 15, 21, 24]
    assert sqrt_mod(9, 81, True) == [3, 24, 30, 51, 57, 78]
    assert sqrt_mod(9, 3**5, True) == [3, 78, 84, 159, 165, 240]
    assert sqrt_mod(81, 3**4, True) == [0, 9, 18, 27, 36, 45, 54, 63, 72]
    assert sqrt_mod(81, 3**5, True) == [9, 18, 36, 45, 63, 72, 90, 99, 117,\
            126, 144, 153, 171, 180, 198, 207, 225, 234]
    assert sqrt_mod(81, 3**6, True) == [9, 72, 90, 153, 171, 234, 252, 315,\
            333, 396, 414, 477, 495, 558, 576, 639, 657, 720]
    assert sqrt_mod(81, 3**7, True) == [9, 234, 252, 477, 495, 720, 738, 963,\
            981, 1206, 1224, 1449, 1467, 1692, 1710, 1935, 1953, 2178]

    for a, p in [(26214400, 32768000000), (26214400, 16384000000),
        (262144, 1048576), (87169610025, 163443018796875),
        (22315420166400, 167365651248000000)]:
        assert pow(sqrt_mod(a, p), 2, p) == a

    n = 70
    a, p = 5**2*3**n*2**n, 5**6*3**(n+1)*2**(n+2)
    it = sqrt_mod_iter(a, p)
    for i in range(10):
        assert pow(next(it), 2, p) == a
    a, p = 5**2*3**n*2**n, 5**6*3**(n+1)*2**(n+3)
    it = sqrt_mod_iter(a, p)
    for i in range(2):
        assert pow(next(it), 2, p) == a
    n = 100
    a, p = 5**2*3**n*2**n, 5**6*3**(n+1)*2**(n+1)
    it = sqrt_mod_iter(a, p)
    for i in range(2):
        assert pow(next(it), 2, p) == a

    assert type(next(sqrt_mod_iter(9, 27))) is int
    assert type(next(sqrt_mod_iter(9, 27, ZZ))) is type(ZZ(1))
    assert type(next(sqrt_mod_iter(1, 7, ZZ))) is type(ZZ(1))

    assert is_nthpow_residue(2, 1, 5)

    #issue 10816
    assert is_nthpow_residue(1, 0, 1) is False
    assert is_nthpow_residue(1, 0, 2) is True
    assert is_nthpow_residue(3, 0, 2) is True
    assert is_nthpow_residue(0, 1, 8) is True
    assert is_nthpow_residue(2, 3, 2) is True
    assert is_nthpow_residue(2, 3, 9) is False
    assert is_nthpow_residue(3, 5, 30) is True
    assert is_nthpow_residue(21, 11, 20) is True
    assert is_nthpow_residue(7, 10, 20) is False
    assert is_nthpow_residue(5, 10, 20) is True
    assert is_nthpow_residue(3, 10, 48) is False
    assert is_nthpow_residue(1, 10, 40) is True
    assert is_nthpow_residue(3, 10, 24) is False
    assert is_nthpow_residue(1, 10, 24) is True
    assert is_nthpow_residue(3, 10, 24) is False
    assert is_nthpow_residue(2, 10, 48) is False
    assert is_nthpow_residue(81, 3, 972) is False
    assert is_nthpow_residue(243, 5, 5103) is True
    assert is_nthpow_residue(243, 3, 1240029) is False
    assert is_nthpow_residue(36010, 8, 87382) is True
    assert is_nthpow_residue(28552, 6, 2218) is True
    assert is_nthpow_residue(92712, 9, 50026) is True
    x = {pow(i, 56, 1024) for i in range(1024)}
    assert {a for a in range(1024) if is_nthpow_residue(a, 56, 1024)} == x
    x = { pow(i, 256, 2048) for i in range(2048)}
    assert {a for a in range(2048) if is_nthpow_residue(a, 256, 2048)} == x
    x = { pow(i, 11, 324000) for i in range(1000)}
    assert [ is_nthpow_residue(a, 11, 324000) for a in x]
    x = { pow(i, 17, 22217575536) for i in range(1000)}
    assert [ is_nthpow_residue(a, 17, 22217575536) for a in x]
    assert is_nthpow_residue(676, 3, 5364)
    assert is_nthpow_residue(9, 12, 36)
    assert is_nthpow_residue(32, 10, 41)
    assert is_nthpow_residue(4, 2, 64)
    assert is_nthpow_residue(31, 4, 41)
    assert not is_nthpow_residue(2, 2, 5)
    assert is_nthpow_residue(8547, 12, 10007)
    assert is_nthpow_residue(Dummy(even=True) + 3, 3, 2) == True
    # _nthroot_mod_prime_power
    for p in primerange(2, 10):
        for a in range(3):
            for n in range(3, 5):
                ans = _nthroot_mod_prime_power(a, n, p, 1)
                assert isinstance(ans, list)
                if len(ans) == 0:
                    for b in range(p):
                        assert pow(b, n, p) != a % p
                    for k in range(2, 10):
                        assert _nthroot_mod_prime_power(a, n, p, k) == []
                else:
                    for b in range(p):
                        pred = pow(b, n, p) == a % p
                        assert not(pred ^ (b in ans))
                    for k in range(2, 10):
                        ans = _nthroot_mod_prime_power(a, n, p, k)
                        if not ans:
                            break
                        for b in ans:
                            assert pow(b, n , p**k) == a

    assert nthroot_mod(Dummy(odd=True), 3, 2) == 1
    assert nthroot_mod(29, 31, 74) == 45
    assert nthroot_mod(1801, 11, 2663) == 44
    for a, q, p in [(51922, 2, 203017), (43, 3, 109), (1801, 11, 2663),
          (26118163, 1303, 33333347), (1499, 7, 2663), (595, 6, 2663),
          (1714, 12, 2663), (28477, 9, 33343)]:
        r = nthroot_mod(a, q, p)
        assert pow(r, q, p) == a
    assert nthroot_mod(11, 3, 109) is None
    assert nthroot_mod(16, 5, 36, True) == [4, 22]
    assert nthroot_mod(9, 16, 36, True) == [3, 9, 15, 21, 27, 33]
    assert nthroot_mod(4, 3, 3249000) is None
    assert nthroot_mod(36010, 8, 87382, True) == [40208, 47174]
    assert nthroot_mod(0, 12, 37, True) == [0]
    assert nthroot_mod(0, 7, 100, True) == [0, 10, 20, 30, 40, 50, 60, 70, 80, 90]
    assert nthroot_mod(4, 4, 27, True) == [5, 22]
    assert nthroot_mod(4, 4, 121, True) == [19, 102]
    assert nthroot_mod(2, 3, 7, True) == []
    for p in range(1, 20):
        for a in range(p):
            for n in range(1, p):
                ans = nthroot_mod(a, n, p, True)
                assert isinstance(ans, list)
                for b in range(p):
                    pred = pow(b, n, p) == a
                    assert not(pred ^ (b in ans))
                ans2 = nthroot_mod(a, n, p, False)
                if ans2 is None:
                    assert ans == []
                else:
                    assert ans2 in ans

    x = Symbol('x', positive=True)
    i = Symbol('i', integer=True)
    assert _discrete_log_trial_mul(587, 2**7, 2) == 7
    assert _discrete_log_trial_mul(941, 7**18, 7) == 18
    assert _discrete_log_trial_mul(389, 3**81, 3) == 81
    assert _discrete_log_trial_mul(191, 19**123, 19) == 123
    assert _discrete_log_shanks_steps(442879, 7**2, 7) == 2
    assert _discrete_log_shanks_steps(874323, 5**19, 5) == 19
    assert _discrete_log_shanks_steps(6876342, 7**71, 7) == 71
    assert _discrete_log_shanks_steps(2456747, 3**321, 3) == 321
    assert _discrete_log_pollard_rho(6013199, 2**6, 2, rseed=0) == 6
    assert _discrete_log_pollard_rho(6138719, 2**19, 2, rseed=0) == 19
    assert _discrete_log_pollard_rho(36721943, 2**40, 2, rseed=0) == 40
    assert _discrete_log_pollard_rho(24567899, 3**333, 3, rseed=0) == 333
    raises(ValueError, lambda: _discrete_log_pollard_rho(11, 7, 31, rseed=0))
    raises(ValueError, lambda: _discrete_log_pollard_rho(227, 3**7, 5, rseed=0))
    assert _discrete_log_index_calculus(983, 948, 2, 491) == 183
    assert _discrete_log_index_calculus(633383, 21794, 2, 316691) == 68048
    assert _discrete_log_index_calculus(941762639, 68822582, 2, 470881319) == 338029275
    assert _discrete_log_index_calculus(999231337607, 888188918786, 2, 499615668803) == 142811376514
    assert _discrete_log_index_calculus(47747730623, 19410045286, 43425105668, 645239603) == 590504662
    assert _discrete_log_pohlig_hellman(98376431, 11**9, 11) == 9
    assert _discrete_log_pohlig_hellman(78723213, 11**31, 11) == 31
    assert _discrete_log_pohlig_hellman(32942478, 11**98, 11) == 98
    assert _discrete_log_pohlig_hellman(14789363, 11**444, 11) == 444
    assert discrete_log(587, 2**9, 2) == 9
    assert discrete_log(2456747, 3**51, 3) == 51
    assert discrete_log(32942478, 11**127, 11) == 127
    assert discrete_log(432751500361, 7**324, 7) == 324
    assert discrete_log(265390227570863,184500076053622, 2) == 17835221372061
    assert discrete_log(22708823198678103974314518195029102158525052496759285596453269189798311427475159776411276642277139650833937,
                        17463946429475485293747680247507700244427944625055089103624311227422110546803452417458985046168310373075327,
                        123456) == 2068031853682195777930683306640554533145512201725884603914601918777510185469769997054750835368413389728895
    args = 5779, 3528, 6215
    assert discrete_log(*args) == 687
    assert discrete_log(*Tuple(*args)) == 687
    assert quadratic_congruence(400, 85, 125, 1600) == [295, 615, 935, 1255, 1575]
    assert quadratic_congruence(3, 6, 5, 25) == [3, 20]
    assert quadratic_congruence(120, 80, 175, 500) == []
    assert quadratic_congruence(15, 14, 7, 2) == [1]
    assert quadratic_congruence(8, 15, 7, 29) == [10, 28]
    assert quadratic_congruence(160, 200, 300, 461) == [144, 431]
    assert quadratic_congruence(100000, 123456, 7415263, 48112959837082048697) == [30417843635344493501, 36001135160550533083]
    assert quadratic_congruence(65, 121, 72, 277) == [249, 252]
    assert quadratic_congruence(5, 10, 14, 2) == [0]
    assert quadratic_congruence(10, 17, 19, 2) == [1]
    assert quadratic_congruence(10, 14, 20, 2) == [0, 1]
    assert polynomial_congruence(6*x**5 + 10*x**4 + 5*x**3 + x**2 + x + 1,
        972000) == [220999, 242999, 463999, 485999, 706999, 728999, 949999, 971999]

    assert polynomial_congruence(x**3 - 10*x**2 + 12*x - 82, 33075) == [30287]
    assert polynomial_congruence(x**2 + x + 47, 2401) == [785, 1615]
    assert polynomial_congruence(10*x**2 + 14*x + 20, 2) == [0, 1]
    assert polynomial_congruence(x**3 + 3, 16) == [5]
    assert polynomial_congruence(65*x**2 + 121*x + 72, 277) == [249, 252]
    assert polynomial_congruence(x**4 - 4, 27) == [5, 22]
    assert polynomial_congruence(35*x**3 - 6*x**2 - 567*x + 2308, 148225) == [86957,
        111157, 122531, 146731]
    assert polynomial_congruence(x**16 - 9, 36) == [3, 9, 15, 21, 27, 33]
    assert polynomial_congruence(x**6 - 2*x**5 - 35, 6125) == [3257]
    raises(ValueError, lambda: polynomial_congruence(x**x, 6125))
    raises(ValueError, lambda: polynomial_congruence(x**i, 6125))
    raises(ValueError, lambda: polynomial_congruence(0.1*x**2 + 6, 100))

    assert binomial_mod(-1, 1, 10) == 0
    assert binomial_mod(1, -1, 10) == 0
    raises(ValueError, lambda: binomial_mod(2, 1, -1))
    assert binomial_mod(51, 10, 10) == 0
    assert binomial_mod(10**3, 500, 3**6) == 567
    assert binomial_mod(10**18 - 1, 123456789, 4) == 0
    assert binomial_mod(10**18, 10**12, (10**5 + 3)**2) == 3744312326


def test_binomial_p_pow():
    n, binomials, binomial = 1000, [1], 1
    for i in range(1, n + 1):
        binomial *= n - i + 1
        binomial //= i
        binomials.append(binomial)

    # Test powers of two, which the algorithm treats slightly differently
    trials_2 = 100
    for _ in range(trials_2):
        m, power = randint(0, n), randint(1, 20)
        assert _binomial_mod_prime_power(n, m, 2, power) == binomials[m] % 2**power

    # Test against other prime powers
    primes = list(sieve.primerange(2*n))
    trials = 1000
    for _ in range(trials):
        m, prime, power = randint(0, n), choice(primes), randint(1, 10)
        assert _binomial_mod_prime_power(n, m, prime, power) == binomials[m] % prime**power


def test_deprecated_ntheory_symbolic_functions():
    from sympy.testing.pytest import warns_deprecated_sympy

    with warns_deprecated_sympy():
        assert mobius(3) == -1
    with warns_deprecated_sympy():
        assert legendre_symbol(2, 3) == -1
    with warns_deprecated_sympy():
        assert jacobi_symbol(2, 3) == -1