Spaces:
Sleeping
Sleeping
File size: 16,360 Bytes
6a86ad5 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 |
"""Most of these tests come from the examples in Bronstein's book."""
from sympy.integrals.risch import DifferentialExtension, derivation
from sympy.integrals.prde import (prde_normal_denom, prde_special_denom,
prde_linear_constraints, constant_system, prde_spde, prde_no_cancel_b_large,
prde_no_cancel_b_small, limited_integrate_reduce, limited_integrate,
is_deriv_k, is_log_deriv_k_t_radical, parametric_log_deriv_heu,
is_log_deriv_k_t_radical_in_field, param_poly_rischDE, param_rischDE,
prde_cancel_liouvillian)
from sympy.polys.polymatrix import PolyMatrix as Matrix
from sympy.core.numbers import Rational
from sympy.core.singleton import S
from sympy.core.symbol import symbols
from sympy.polys.domains.rationalfield import QQ
from sympy.polys.polytools import Poly
from sympy.abc import x, t, n
t0, t1, t2, t3, k = symbols('t:4 k')
def test_prde_normal_denom():
DE = DifferentialExtension(extension={'D': [Poly(1, x), Poly(1 + t**2, t)]})
fa = Poly(1, t)
fd = Poly(x, t)
G = [(Poly(t, t), Poly(1 + t**2, t)), (Poly(1, t), Poly(x + x*t**2, t))]
assert prde_normal_denom(fa, fd, G, DE) == \
(Poly(x, t, domain='ZZ(x)'), (Poly(1, t, domain='ZZ(x)'), Poly(1, t,
domain='ZZ(x)')), [(Poly(x*t, t, domain='ZZ(x)'),
Poly(t**2 + 1, t, domain='ZZ(x)')), (Poly(1, t, domain='ZZ(x)'),
Poly(t**2 + 1, t, domain='ZZ(x)'))], Poly(1, t, domain='ZZ(x)'))
G = [(Poly(t, t), Poly(t**2 + 2*t + 1, t)), (Poly(x*t, t),
Poly(t**2 + 2*t + 1, t)), (Poly(x*t**2, t), Poly(t**2 + 2*t + 1, t))]
DE = DifferentialExtension(extension={'D': [Poly(1, x), Poly(t, t)]})
assert prde_normal_denom(Poly(x, t), Poly(1, t), G, DE) == \
(Poly(t + 1, t), (Poly((-1 + x)*t + x, t), Poly(1, t, domain='ZZ[x]')), [(Poly(t, t),
Poly(1, t)), (Poly(x*t, t), Poly(1, t, domain='ZZ[x]')), (Poly(x*t**2, t),
Poly(1, t, domain='ZZ[x]'))], Poly(t + 1, t))
def test_prde_special_denom():
a = Poly(t + 1, t)
ba = Poly(t**2, t)
bd = Poly(1, t)
G = [(Poly(t, t), Poly(1, t)), (Poly(t**2, t), Poly(1, t)), (Poly(t**3, t), Poly(1, t))]
DE = DifferentialExtension(extension={'D': [Poly(1, x), Poly(t, t)]})
assert prde_special_denom(a, ba, bd, G, DE) == \
(Poly(t + 1, t), Poly(t**2, t), [(Poly(t, t), Poly(1, t)),
(Poly(t**2, t), Poly(1, t)), (Poly(t**3, t), Poly(1, t))], Poly(1, t))
G = [(Poly(t, t), Poly(1, t)), (Poly(1, t), Poly(t, t))]
assert prde_special_denom(Poly(1, t), Poly(t**2, t), Poly(1, t), G, DE) == \
(Poly(1, t), Poly(t**2 - 1, t), [(Poly(t**2, t), Poly(1, t)),
(Poly(1, t), Poly(1, t))], Poly(t, t))
DE = DifferentialExtension(extension={'D': [Poly(1, x), Poly(-2*x*t0, t0)]})
DE.decrement_level()
G = [(Poly(t, t), Poly(t**2, t)), (Poly(2*t, t), Poly(t, t))]
assert prde_special_denom(Poly(5*x*t + 1, t), Poly(t**2 + 2*x**3*t, t), Poly(t**3 + 2, t), G, DE) == \
(Poly(5*x*t + 1, t), Poly(0, t, domain='ZZ[x]'), [(Poly(t, t), Poly(t**2, t)),
(Poly(2*t, t), Poly(t, t))], Poly(1, x))
DE = DifferentialExtension(extension={'D': [Poly(1, x), Poly((t**2 + 1)*2*x, t)]})
G = [(Poly(t + x, t), Poly(t*x, t)), (Poly(2*t, t), Poly(x**2, x))]
assert prde_special_denom(Poly(5*x*t + 1, t), Poly(t**2 + 2*x**3*t, t), Poly(t**3, t), G, DE) == \
(Poly(5*x*t + 1, t), Poly(0, t, domain='ZZ[x]'), [(Poly(t + x, t), Poly(x*t, t)),
(Poly(2*t, t, x), Poly(x**2, t, x))], Poly(1, t))
assert prde_special_denom(Poly(t + 1, t), Poly(t**2, t), Poly(t**3, t), G, DE) == \
(Poly(t + 1, t), Poly(0, t, domain='ZZ[x]'), [(Poly(t + x, t), Poly(x*t, t)), (Poly(2*t, t, x),
Poly(x**2, t, x))], Poly(1, t))
def test_prde_linear_constraints():
DE = DifferentialExtension(extension={'D': [Poly(1, x)]})
G = [(Poly(2*x**3 + 3*x + 1, x), Poly(x**2 - 1, x)), (Poly(1, x), Poly(x - 1, x)),
(Poly(1, x), Poly(x + 1, x))]
assert prde_linear_constraints(Poly(1, x), Poly(0, x), G, DE) == \
((Poly(2*x, x, domain='QQ'), Poly(0, x, domain='QQ'), Poly(0, x, domain='QQ')),
Matrix([[1, 1, -1], [5, 1, 1]], x))
G = [(Poly(t, t), Poly(1, t)), (Poly(t**2, t), Poly(1, t)), (Poly(t**3, t), Poly(1, t))]
DE = DifferentialExtension(extension={'D': [Poly(1, x), Poly(t, t)]})
assert prde_linear_constraints(Poly(t + 1, t), Poly(t**2, t), G, DE) == \
((Poly(t, t, domain='QQ'), Poly(t**2, t, domain='QQ'), Poly(t**3, t, domain='QQ')),
Matrix(0, 3, [], t))
G = [(Poly(2*x, t), Poly(t, t)), (Poly(-x, t), Poly(t, t))]
DE = DifferentialExtension(extension={'D': [Poly(1, x), Poly(1/x, t)]})
assert prde_linear_constraints(Poly(1, t), Poly(0, t), G, DE) == \
((Poly(0, t, domain='QQ[x]'), Poly(0, t, domain='QQ[x]')), Matrix([[2*x, -x]], t))
def test_constant_system():
A = Matrix([[-(x + 3)/(x - 1), (x + 1)/(x - 1), 1],
[-x - 3, x + 1, x - 1],
[2*(x + 3)/(x - 1), 0, 0]], t)
u = Matrix([[(x + 1)/(x - 1)], [x + 1], [0]], t)
DE = DifferentialExtension(extension={'D': [Poly(1, x)]})
R = QQ.frac_field(x)[t]
assert constant_system(A, u, DE) == \
(Matrix([[1, 0, 0],
[0, 1, 0],
[0, 0, 0],
[0, 0, 1]], ring=R), Matrix([0, 1, 0, 0], ring=R))
def test_prde_spde():
D = [Poly(x, t), Poly(-x*t, t)]
DE = DifferentialExtension(extension={'D': [Poly(1, x), Poly(1/x, t)]})
# TODO: when bound_degree() can handle this, test degree bound from that too
assert prde_spde(Poly(t, t), Poly(-1/x, t), D, n, DE) == \
(Poly(t, t), Poly(0, t, domain='ZZ(x)'),
[Poly(2*x, t, domain='ZZ(x)'), Poly(-x, t, domain='ZZ(x)')],
[Poly(-x**2, t, domain='ZZ(x)'), Poly(0, t, domain='ZZ(x)')], n - 1)
def test_prde_no_cancel():
# b large
DE = DifferentialExtension(extension={'D': [Poly(1, x)]})
assert prde_no_cancel_b_large(Poly(1, x), [Poly(x**2, x), Poly(1, x)], 2, DE) == \
([Poly(x**2 - 2*x + 2, x), Poly(1, x)], Matrix([[1, 0, -1, 0],
[0, 1, 0, -1]], x))
assert prde_no_cancel_b_large(Poly(1, x), [Poly(x**3, x), Poly(1, x)], 3, DE) == \
([Poly(x**3 - 3*x**2 + 6*x - 6, x), Poly(1, x)], Matrix([[1, 0, -1, 0],
[0, 1, 0, -1]], x))
assert prde_no_cancel_b_large(Poly(x, x), [Poly(x**2, x), Poly(1, x)], 1, DE) == \
([Poly(x, x, domain='ZZ'), Poly(0, x, domain='ZZ')], Matrix([[1, -1, 0, 0],
[1, 0, -1, 0],
[0, 1, 0, -1]], x))
# b small
# XXX: Is there a better example of a monomial with D.degree() > 2?
DE = DifferentialExtension(extension={'D': [Poly(1, x), Poly(t**3 + 1, t)]})
# My original q was t**4 + t + 1, but this solution implies q == t**4
# (c1 = 4), with some of the ci for the original q equal to 0.
G = [Poly(t**6, t), Poly(x*t**5, t), Poly(t**3, t), Poly(x*t**2, t), Poly(1 + x, t)]
R = QQ.frac_field(x)[t]
assert prde_no_cancel_b_small(Poly(x*t, t), G, 4, DE) == \
([Poly(t**4/4 - x/12*t**3 + x**2/24*t**2 + (Rational(-11, 12) - x**3/24)*t + x/24, t),
Poly(x/3*t**3 - x**2/6*t**2 + (Rational(-1, 3) + x**3/6)*t - x/6, t), Poly(t, t),
Poly(0, t), Poly(0, t)], Matrix([[1, 0, -1, 0, 0, 0, 0, 0, 0, 0],
[0, 1, Rational(-1, 4), 0, 0, 0, 0, 0, 0, 0],
[0, 0, 0, 0, 0, 0, 0, 0, 0, 0],
[0, 0, 0, 1, 0, 0, 0, 0, 0, 0],
[0, 0, 0, 0, 1, 0, 0, 0, 0, 0],
[1, 0, 0, 0, 0, -1, 0, 0, 0, 0],
[0, 1, 0, 0, 0, 0, -1, 0, 0, 0],
[0, 0, 1, 0, 0, 0, 0, -1, 0, 0],
[0, 0, 0, 1, 0, 0, 0, 0, -1, 0],
[0, 0, 0, 0, 1, 0, 0, 0, 0, -1]], ring=R))
# TODO: Add test for deg(b) <= 0 with b small
DE = DifferentialExtension(extension={'D': [Poly(1, x), Poly(1 + t**2, t)]})
b = Poly(-1/x**2, t, field=True) # deg(b) == 0
q = [Poly(x**i*t**j, t, field=True) for i in range(2) for j in range(3)]
h, A = prde_no_cancel_b_small(b, q, 3, DE)
V = A.nullspace()
R = QQ.frac_field(x)[t]
assert len(V) == 1
assert V[0] == Matrix([Rational(-1, 2), 0, 0, 1, 0, 0]*3, ring=R)
assert (Matrix([h])*V[0][6:, :])[0] == Poly(x**2/2, t, domain='QQ(x)')
assert (Matrix([q])*V[0][:6, :])[0] == Poly(x - S.Half, t, domain='QQ(x)')
def test_prde_cancel_liouvillian():
### 1. case == 'primitive'
# used when integrating f = log(x) - log(x - 1)
# Not taken from 'the' book
DE = DifferentialExtension(extension={'D': [Poly(1, x), Poly(1/x, t)]})
p0 = Poly(0, t, field=True)
p1 = Poly((x - 1)*t, t, domain='ZZ(x)')
p2 = Poly(x - 1, t, domain='ZZ(x)')
p3 = Poly(-x**2 + x, t, domain='ZZ(x)')
h, A = prde_cancel_liouvillian(Poly(-1/(x - 1), t), [Poly(-x + 1, t), Poly(1, t)], 1, DE)
V = A.nullspace()
assert h == [p0, p0, p1, p0, p0, p0, p0, p0, p0, p0, p2, p3, p0, p0, p0, p0]
assert A.rank() == 16
assert (Matrix([h])*V[0][:16, :]) == Matrix([[Poly(0, t, domain='QQ(x)')]])
### 2. case == 'exp'
# used when integrating log(x/exp(x) + 1)
# Not taken from book
DE = DifferentialExtension(extension={'D': [Poly(1, x), Poly(-t, t)]})
assert prde_cancel_liouvillian(Poly(0, t, domain='QQ[x]'), [Poly(1, t, domain='QQ(x)')], 0, DE) == \
([Poly(1, t, domain='QQ'), Poly(x, t, domain='ZZ(x)')], Matrix([[-1, 0, 1]], DE.t))
def test_param_poly_rischDE():
DE = DifferentialExtension(extension={'D': [Poly(1, x)]})
a = Poly(x**2 - x, x, field=True)
b = Poly(1, x, field=True)
q = [Poly(x, x, field=True), Poly(x**2, x, field=True)]
h, A = param_poly_rischDE(a, b, q, 3, DE)
assert A.nullspace() == [Matrix([0, 1, 1, 1], DE.t)] # c1, c2, d1, d2
# Solution of a*Dp + b*p = c1*q1 + c2*q2 = q2 = x**2
# is d1*h1 + d2*h2 = h1 + h2 = x.
assert h[0] + h[1] == Poly(x, x, domain='QQ')
# a*Dp + b*p = q1 = x has no solution.
a = Poly(x**2 - x, x, field=True)
b = Poly(x**2 - 5*x + 3, x, field=True)
q = [Poly(1, x, field=True), Poly(x, x, field=True),
Poly(x**2, x, field=True)]
h, A = param_poly_rischDE(a, b, q, 3, DE)
assert A.nullspace() == [Matrix([3, -5, 1, -5, 1, 1], DE.t)]
p = -Poly(5, DE.t)*h[0] + h[1] + h[2] # Poly(1, x)
assert a*derivation(p, DE) + b*p == Poly(x**2 - 5*x + 3, x, domain='QQ')
def test_param_rischDE():
DE = DifferentialExtension(extension={'D': [Poly(1, x)]})
p1, px = Poly(1, x, field=True), Poly(x, x, field=True)
G = [(p1, px), (p1, p1), (px, p1)] # [1/x, 1, x]
h, A = param_rischDE(-p1, Poly(x**2, x, field=True), G, DE)
assert len(h) == 3
p = [hi[0].as_expr()/hi[1].as_expr() for hi in h]
V = A.nullspace()
assert len(V) == 2
assert V[0] == Matrix([-1, 1, 0, -1, 1, 0], DE.t)
y = -p[0] + p[1] + 0*p[2] # x
assert y.diff(x) - y/x**2 == 1 - 1/x # Dy + f*y == -G0 + G1 + 0*G2
# the below test computation takes place while computing the integral
# of 'f = log(log(x + exp(x)))'
DE = DifferentialExtension(extension={'D': [Poly(1, x), Poly(t, t)]})
G = [(Poly(t + x, t, domain='ZZ(x)'), Poly(1, t, domain='QQ')), (Poly(0, t, domain='QQ'), Poly(1, t, domain='QQ'))]
h, A = param_rischDE(Poly(-t - 1, t, field=True), Poly(t + x, t, field=True), G, DE)
assert len(h) == 5
p = [hi[0].as_expr()/hi[1].as_expr() for hi in h]
V = A.nullspace()
assert len(V) == 3
assert V[0] == Matrix([0, 0, 0, 0, 1, 0, 0], DE.t)
y = 0*p[0] + 0*p[1] + 1*p[2] + 0*p[3] + 0*p[4]
assert y.diff(t) - y/(t + x) == 0 # Dy + f*y = 0*G0 + 0*G1
def test_limited_integrate_reduce():
DE = DifferentialExtension(extension={'D': [Poly(1, x), Poly(1/x, t)]})
assert limited_integrate_reduce(Poly(x, t), Poly(t**2, t), [(Poly(x, t),
Poly(t, t))], DE) == \
(Poly(t, t), Poly(-1/x, t), Poly(t, t), 1, (Poly(x, t), Poly(1, t, domain='ZZ[x]')),
[(Poly(-x*t, t), Poly(1, t, domain='ZZ[x]'))])
def test_limited_integrate():
DE = DifferentialExtension(extension={'D': [Poly(1, x)]})
G = [(Poly(x, x), Poly(x + 1, x))]
assert limited_integrate(Poly(-(1 + x + 5*x**2 - 3*x**3), x),
Poly(1 - x - x**2 + x**3, x), G, DE) == \
((Poly(x**2 - x + 2, x), Poly(x - 1, x, domain='QQ')), [2])
G = [(Poly(1, x), Poly(x, x))]
assert limited_integrate(Poly(5*x**2, x), Poly(3, x), G, DE) == \
((Poly(5*x**3/9, x), Poly(1, x, domain='QQ')), [0])
def test_is_log_deriv_k_t_radical():
DE = DifferentialExtension(extension={'D': [Poly(1, x)], 'exts': [None],
'extargs': [None]})
assert is_log_deriv_k_t_radical(Poly(2*x, x), Poly(1, x), DE) is None
DE = DifferentialExtension(extension={'D': [Poly(1, x), Poly(2*t1, t1), Poly(1/x, t2)],
'exts': [None, 'exp', 'log'], 'extargs': [None, 2*x, x]})
assert is_log_deriv_k_t_radical(Poly(x + t2/2, t2), Poly(1, t2), DE) == \
([(t1, 1), (x, 1)], t1*x, 2, 0)
# TODO: Add more tests
DE = DifferentialExtension(extension={'D': [Poly(1, x), Poly(t0, t0), Poly(1/x, t)],
'exts': [None, 'exp', 'log'], 'extargs': [None, x, x]})
assert is_log_deriv_k_t_radical(Poly(x + t/2 + 3, t), Poly(1, t), DE) == \
([(t0, 2), (x, 1)], x*t0**2, 2, 3)
def test_is_deriv_k():
DE = DifferentialExtension(extension={'D': [Poly(1, x), Poly(1/x, t1), Poly(1/(x + 1), t2)],
'exts': [None, 'log', 'log'], 'extargs': [None, x, x + 1]})
assert is_deriv_k(Poly(2*x**2 + 2*x, t2), Poly(1, t2), DE) == \
([(t1, 1), (t2, 1)], t1 + t2, 2)
DE = DifferentialExtension(extension={'D': [Poly(1, x), Poly(1/x, t1), Poly(t2, t2)],
'exts': [None, 'log', 'exp'], 'extargs': [None, x, x]})
assert is_deriv_k(Poly(x**2*t2**3, t2), Poly(1, t2), DE) == \
([(x, 3), (t1, 2)], 2*t1 + 3*x, 1)
# TODO: Add more tests, including ones with exponentials
DE = DifferentialExtension(extension={'D': [Poly(1, x), Poly(2/x, t1)],
'exts': [None, 'log'], 'extargs': [None, x**2]})
assert is_deriv_k(Poly(x, t1), Poly(1, t1), DE) == \
([(t1, S.Half)], t1/2, 1)
DE = DifferentialExtension(extension={'D': [Poly(1, x), Poly(2/(1 + x), t0)],
'exts': [None, 'log'], 'extargs': [None, x**2 + 2*x + 1]})
assert is_deriv_k(Poly(1 + x, t0), Poly(1, t0), DE) == \
([(t0, S.Half)], t0/2, 1)
# Issue 10798
# DE = DifferentialExtension(log(1/x), x)
DE = DifferentialExtension(extension={'D': [Poly(1, x), Poly(-1/x, t)],
'exts': [None, 'log'], 'extargs': [None, 1/x]})
assert is_deriv_k(Poly(1, t), Poly(x, t), DE) == ([(t, 1)], t, 1)
def test_is_log_deriv_k_t_radical_in_field():
# NOTE: any potential constant factor in the second element of the result
# doesn't matter, because it cancels in Da/a.
DE = DifferentialExtension(extension={'D': [Poly(1, x), Poly(1/x, t)]})
assert is_log_deriv_k_t_radical_in_field(Poly(5*t + 1, t), Poly(2*t*x, t), DE) == \
(2, t*x**5)
assert is_log_deriv_k_t_radical_in_field(Poly(2 + 3*t, t), Poly(5*x*t, t), DE) == \
(5, x**3*t**2)
DE = DifferentialExtension(extension={'D': [Poly(1, x), Poly(-t/x**2, t)]})
assert is_log_deriv_k_t_radical_in_field(Poly(-(1 + 2*t), t),
Poly(2*x**2 + 2*x**2*t, t), DE) == \
(2, t + t**2)
assert is_log_deriv_k_t_radical_in_field(Poly(-1, t), Poly(x**2, t), DE) == \
(1, t)
assert is_log_deriv_k_t_radical_in_field(Poly(1, t), Poly(2*x**2, t), DE) == \
(2, 1/t)
def test_parametric_log_deriv():
DE = DifferentialExtension(extension={'D': [Poly(1, x), Poly(1/x, t)]})
assert parametric_log_deriv_heu(Poly(5*t**2 + t - 6, t), Poly(2*x*t**2, t),
Poly(-1, t), Poly(x*t**2, t), DE) == \
(2, 6, t*x**5)
|