File size: 37,834 Bytes
6a86ad5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
from sympy.integrals.laplace import (
    laplace_transform, inverse_laplace_transform,
    LaplaceTransform, InverseLaplaceTransform,
    _laplace_deep_collect, laplace_correspondence,
    laplace_initial_conds)
from sympy.core.function import Function, expand_mul
from sympy.core import EulerGamma, Subs, Derivative, diff
from sympy.core.exprtools import factor_terms
from sympy.core.numbers import I, oo, pi
from sympy.core.relational import Eq
from sympy.core.singleton import S
from sympy.core.symbol import Symbol, symbols
from sympy.simplify.simplify import simplify
from sympy.functions.elementary.complexes import Abs, re
from sympy.functions.elementary.exponential import exp, log, exp_polar
from sympy.functions.elementary.hyperbolic import cosh, sinh, coth, asinh
from sympy.functions.elementary.miscellaneous import sqrt
from sympy.functions.elementary.piecewise import Piecewise
from sympy.functions.elementary.trigonometric import atan, cos, sin
from sympy.logic.boolalg import And
from sympy.functions.special.gamma_functions import (
    lowergamma, gamma, uppergamma)
from sympy.functions.special.delta_functions import DiracDelta, Heaviside
from sympy.functions.special.singularity_functions import SingularityFunction
from sympy.functions.special.zeta_functions import lerchphi
from sympy.functions.special.error_functions import (
    fresnelc, fresnels, erf, erfc, Ei, Ci, expint, E1)
from sympy.functions.special.bessel import besseli, besselj, besselk, bessely
from sympy.testing.pytest import slow, warns_deprecated_sympy
from sympy.matrices import Matrix, eye
from sympy.abc import s


@slow
def test_laplace_transform():
    LT = laplace_transform
    ILT = inverse_laplace_transform
    a, b, c = symbols('a, b, c', positive=True)
    np = symbols('np', integer=True, positive=True)
    t, w, x = symbols('t, w, x')
    f = Function('f')
    F = Function('F')
    g = Function('g')
    y = Function('y')
    Y = Function('Y')

    # Test helper functions
    assert (
        _laplace_deep_collect(exp((t+a)*(t+b)) +
                              besselj(2, exp((t+a)*(t+b)-t**2)), t) ==
        exp(a*b + t**2 + t*(a + b)) + besselj(2, exp(a*b + t*(a + b))))
    L = laplace_transform(diff(y(t), t, 3), t, s, noconds=True)
    L = laplace_correspondence(L, {y: Y})
    L = laplace_initial_conds(L, t, {y: [2, 4, 8, 16, 32]})
    assert L == s**3*Y(s) - 2*s**2 - 4*s - 8
    # Test whether `noconds=True` in `doit`:
    assert (2*LaplaceTransform(exp(t), t, s) - 1).doit() == -1 + 2/(s - 1)
    assert (LT(a*t+t**2+t**(S(5)/2), t, s) ==
            (a/s**2 + 2/s**3 + 15*sqrt(pi)/(8*s**(S(7)/2)), 0, True))
    assert LT(b/(t+a), t, s) == (-b*exp(-a*s)*Ei(-a*s), 0, True)
    assert (LT(1/sqrt(t+a), t, s) ==
            (sqrt(pi)*sqrt(1/s)*exp(a*s)*erfc(sqrt(a)*sqrt(s)), 0, True))
    assert (LT(sqrt(t)/(t+a), t, s) ==
            (-pi*sqrt(a)*exp(a*s)*erfc(sqrt(a)*sqrt(s)) + sqrt(pi)*sqrt(1/s),
             0, True))
    assert (LT((t+a)**(-S(3)/2), t, s) ==
            (-2*sqrt(pi)*sqrt(s)*exp(a*s)*erfc(sqrt(a)*sqrt(s)) + 2/sqrt(a),
             0, True))
    assert (LT(t**(S(1)/2)*(t+a)**(-1), t, s) ==
            (-pi*sqrt(a)*exp(a*s)*erfc(sqrt(a)*sqrt(s)) + sqrt(pi)*sqrt(1/s),
             0, True))
    assert (LT(1/(a*sqrt(t) + t**(3/2)), t, s) ==
            (pi*sqrt(a)*exp(a*s)*erfc(sqrt(a)*sqrt(s)), 0, True))
    assert (LT((t+a)**b, t, s) ==
            (s**(-b - 1)*exp(-a*s)*uppergamma(b + 1, a*s), 0, True))
    assert LT(t**5/(t+a), t, s) == (120*a**5*uppergamma(-5, a*s), 0, True)
    assert LT(exp(t), t, s) == (1/(s - 1), 1, True)
    assert LT(exp(2*t), t, s) == (1/(s - 2), 2, True)
    assert LT(exp(a*t), t, s) == (1/(s - a), a, True)
    assert LT(exp(a*(t-b)), t, s) == (exp(-a*b)/(-a + s), a, True)
    assert LT(t*exp(-a*(t)), t, s) == ((a + s)**(-2), -a, True)
    assert LT(t*exp(-a*(t-b)), t, s) == (exp(a*b)/(a + s)**2, -a, True)
    assert LT(b*t*exp(-a*t), t, s) == (b/(a + s)**2, -a, True)
    assert LT(exp(-a*exp(-t)), t, s) == (lowergamma(s, a)/a**s, 0, True)
    assert LT(exp(-a*exp(t)), t, s) == (a**s*uppergamma(-s, a), 0, True)
    assert (LT(t**(S(7)/4)*exp(-8*t)/gamma(S(11)/4), t, s) ==
            ((s + 8)**(-S(11)/4), -8, True))
    assert (LT(t**(S(3)/2)*exp(-8*t), t, s) ==
            (3*sqrt(pi)/(4*(s + 8)**(S(5)/2)), -8, True))
    assert LT(t**a*exp(-a*t), t, s) == ((a+s)**(-a-1)*gamma(a+1), -a, True)
    assert (LT(b*exp(-a*t**2), t, s) ==
            (sqrt(pi)*b*exp(s**2/(4*a))*erfc(s/(2*sqrt(a)))/(2*sqrt(a)),
             0, True))
    assert (LT(exp(-2*t**2), t, s) ==
            (sqrt(2)*sqrt(pi)*exp(s**2/8)*erfc(sqrt(2)*s/4)/4, 0, True))
    assert (LT(b*exp(2*t**2), t, s) ==
            (b*LaplaceTransform(exp(2*t**2), t, s), -oo, True))
    assert (LT(t*exp(-a*t**2), t, s) ==
            (1/(2*a) - s*erfc(s/(2*sqrt(a)))/(4*sqrt(pi)*a**(S(3)/2)),
             0, True))
    assert (LT(exp(-a/t), t, s) ==
            (2*sqrt(a)*sqrt(1/s)*besselk(1, 2*sqrt(a)*sqrt(s)), 0, True))
    assert LT(sqrt(t)*exp(-a/t), t, s, simplify=True) == (
        sqrt(pi)*(sqrt(a)*sqrt(s) + 1/S(2))*sqrt(s**(-3)) *
        exp(-2*sqrt(a)*sqrt(s)), 0, True)
    assert (LT(exp(-a/t)/sqrt(t), t, s) ==
            (sqrt(pi)*sqrt(1/s)*exp(-2*sqrt(a)*sqrt(s)), 0, True))
    assert (LT(exp(-a/t)/(t*sqrt(t)), t, s) ==
            (sqrt(pi)*sqrt(1/a)*exp(-2*sqrt(a)*sqrt(s)), 0, True))
    assert (
        LT(exp(-2*sqrt(a*t)), t, s) ==
        (1/s - sqrt(pi)*sqrt(a) * exp(a/s)*erfc(sqrt(a)*sqrt(1/s)) /
         s**(S(3)/2), 0, True))
    assert LT(exp(-2*sqrt(a*t))/sqrt(t), t, s) == (
        exp(a/s)*erfc(sqrt(a) * sqrt(1/s))*(sqrt(pi)*sqrt(1/s)), 0, True)
    assert (LT(t**4*exp(-2/t), t, s) ==
            (8*sqrt(2)*(1/s)**(S(5)/2)*besselk(5, 2*sqrt(2)*sqrt(s)),
             0, True))
    assert LT(sinh(a*t), t, s) == (a/(-a**2 + s**2), a, True)
    assert (LT(b*sinh(a*t)**2, t, s) ==
            (2*a**2*b/(-4*a**2*s + s**3), 2*a, True))
    assert (LT(b*sinh(a*t)**2, t, s, simplify=True) ==
            (2*a**2*b/(s*(-4*a**2 + s**2)), 2*a, True))
    # The following line confirms that issue #21202 is solved
    assert LT(cosh(2*t), t, s) == (s/(-4 + s**2), 2, True)
    assert LT(cosh(a*t), t, s) == (s/(-a**2 + s**2), a, True)
    assert (LT(cosh(a*t)**2, t, s, simplify=True) ==
            ((2*a**2 - s**2)/(s*(4*a**2 - s**2)), 2*a, True))
    assert (LT(sinh(x+3), x, s, simplify=True) ==
            ((s*sinh(3) + cosh(3))/(s**2 - 1), 1, True))
    L, _, _ = LT(42*sin(w*t+x)**2, t, s)
    assert (
        L -
        21*(s**2 + s*(-s*cos(2*x) + 2*w*sin(2*x)) +
            4*w**2)/(s*(s**2 + 4*w**2))).simplify() == 0
    # The following line replaces the old test test_issue_7173()
    assert LT(sinh(a*t)*cosh(a*t), t, s, simplify=True) == (a/(-4*a**2 + s**2),
                                                            2*a, True)
    assert LT(sinh(a*t)/t, t, s) == (log((a + s)/(-a + s))/2, a, True)
    assert (LT(t**(-S(3)/2)*sinh(a*t), t, s) ==
            (-sqrt(pi)*(sqrt(-a + s) - sqrt(a + s)), a, True))
    assert (LT(sinh(2*sqrt(a*t)), t, s) ==
            (sqrt(pi)*sqrt(a)*exp(a/s)/s**(S(3)/2), 0, True))
    assert (LT(sqrt(t)*sinh(2*sqrt(a*t)), t, s, simplify=True) ==
            ((-sqrt(a)*s**(S(5)/2) + sqrt(pi)*s**2*(2*a + s)*exp(a/s) *
              erf(sqrt(a)*sqrt(1/s))/2)/s**(S(9)/2), 0, True))
    assert (LT(sinh(2*sqrt(a*t))/sqrt(t), t, s) ==
            (sqrt(pi)*exp(a/s)*erf(sqrt(a)*sqrt(1/s))/sqrt(s), 0, True))
    assert (LT(sinh(sqrt(a*t))**2/sqrt(t), t, s) ==
            (sqrt(pi)*(exp(a/s) - 1)/(2*sqrt(s)), 0, True))
    assert (LT(t**(S(3)/7)*cosh(a*t), t, s) ==
            (((a + s)**(-S(10)/7) + (-a+s)**(-S(10)/7))*gamma(S(10)/7)/2,
             a, True))
    assert (LT(cosh(2*sqrt(a*t)), t, s) ==
            (sqrt(pi)*sqrt(a)*exp(a/s)*erf(sqrt(a)*sqrt(1/s))/s**(S(3)/2) +
             1/s, 0, True))
    assert (LT(sqrt(t)*cosh(2*sqrt(a*t)), t, s) ==
            (sqrt(pi)*(a + s/2)*exp(a/s)/s**(S(5)/2), 0, True))
    assert (LT(cosh(2*sqrt(a*t))/sqrt(t), t, s) ==
            (sqrt(pi)*exp(a/s)/sqrt(s), 0, True))
    assert (LT(cosh(sqrt(a*t))**2/sqrt(t), t, s) ==
            (sqrt(pi)*(exp(a/s) + 1)/(2*sqrt(s)), 0, True))
    assert LT(log(t), t, s, simplify=True) == (
        (-log(s) - EulerGamma)/s, 0, True)
    assert (LT(-log(t/a), t, s, simplify=True) ==
            ((log(a) + log(s) + EulerGamma)/s, 0, True))
    assert LT(log(1+a*t), t, s) == (-exp(s/a)*Ei(-s/a)/s, 0, True)
    assert (LT(log(t+a), t, s, simplify=True) ==
            ((s*log(a) - exp(s/a)*Ei(-s/a))/s**2, 0, True))
    assert (LT(log(t)/sqrt(t), t, s, simplify=True) ==
            (sqrt(pi)*(-log(s) - log(4) - EulerGamma)/sqrt(s), 0, True))
    assert (LT(t**(S(5)/2)*log(t), t, s, simplify=True) ==
            (sqrt(pi)*(-15*log(s) - log(1073741824) - 15*EulerGamma + 46) /
             (8*s**(S(7)/2)), 0, True))
    assert (LT(t**3*log(t), t, s, noconds=True, simplify=True) -
            6*(-log(s) - S.EulerGamma + S(11)/6)/s**4).simplify() == S.Zero
    assert (LT(log(t)**2, t, s, simplify=True) ==
            (((log(s) + EulerGamma)**2 + pi**2/6)/s, 0, True))
    assert (LT(exp(-a*t)*log(t), t, s, simplify=True) ==
            ((-log(a + s) - EulerGamma)/(a + s), -a, True))
    assert LT(sin(a*t), t, s) == (a/(a**2 + s**2), 0, True)
    assert (LT(Abs(sin(a*t)), t, s) ==
            (a*coth(pi*s/(2*a))/(a**2 + s**2), 0, True))
    assert LT(sin(a*t)/t, t, s) == (atan(a/s), 0, True)
    assert LT(sin(a*t)**2/t, t, s) == (log(4*a**2/s**2 + 1)/4, 0, True)
    assert (LT(sin(a*t)**2/t**2, t, s) ==
            (a*atan(2*a/s) - s*log(4*a**2/s**2 + 1)/4, 0, True))
    assert (LT(sin(2*sqrt(a*t)), t, s) ==
            (sqrt(pi)*sqrt(a)*exp(-a/s)/s**(S(3)/2), 0, True))
    assert LT(sin(2*sqrt(a*t))/t, t, s) == (pi*erf(sqrt(a)*sqrt(1/s)), 0, True)
    assert LT(cos(a*t), t, s) == (s/(a**2 + s**2), 0, True)
    assert (LT(cos(a*t)**2, t, s) ==
            ((2*a**2 + s**2)/(s*(4*a**2 + s**2)), 0, True))
    assert (LT(sqrt(t)*cos(2*sqrt(a*t)), t, s, simplify=True) ==
            (sqrt(pi)*(-a + s/2)*exp(-a/s)/s**(S(5)/2), 0, True))
    assert (LT(cos(2*sqrt(a*t))/sqrt(t), t, s) ==
            (sqrt(pi)*sqrt(1/s)*exp(-a/s), 0, True))
    assert (LT(sin(a*t)*sin(b*t), t, s) ==
            (2*a*b*s/((s**2 + (a - b)**2)*(s**2 + (a + b)**2)), 0, True))
    assert (LT(cos(a*t)*sin(b*t), t, s) ==
            (b*(-a**2 + b**2 + s**2)/((s**2 + (a - b)**2)*(s**2 + (a + b)**2)),
             0, True))
    assert (LT(cos(a*t)*cos(b*t), t, s) ==
            (s*(a**2 + b**2 + s**2)/((s**2 + (a - b)**2)*(s**2 + (a + b)**2)),
             0, True))
    assert (LT(-a*t*cos(a*t) + sin(a*t), t, s, simplify=True) ==
            (2*a**3/(a**4 + 2*a**2*s**2 + s**4), 0, True))
    assert LT(c*exp(-b*t)*sin(a*t), t, s) == (a *
                                              c/(a**2 + (b + s)**2), -b, True)
    assert LT(c*exp(-b*t)*cos(a*t), t, s) == (c*(b + s)/(a**2 + (b + s)**2),
                                              -b, True)
    L, plane, cond = LT(cos(x + 3), x, s, simplify=True)
    assert plane == 0
    assert L - (s*cos(3) - sin(3))/(s**2 + 1) == 0
    # Error functions (laplace7.pdf)
    assert LT(erf(a*t), t, s) == (exp(s**2/(4*a**2))*erfc(s/(2*a))/s, 0, True)
    assert LT(erf(sqrt(a*t)), t, s) == (sqrt(a)/(s*sqrt(a + s)), 0, True)
    assert (LT(exp(a*t)*erf(sqrt(a*t)), t, s, simplify=True) ==
            (-sqrt(a)/(sqrt(s)*(a - s)), a, True))
    assert (LT(erf(sqrt(a/t)/2), t, s, simplify=True) ==
            (1/s - exp(-sqrt(a)*sqrt(s))/s, 0, True))
    assert (LT(erfc(sqrt(a*t)), t, s, simplify=True) ==
            (-sqrt(a)/(s*sqrt(a + s)) + 1/s, -a, True))
    assert (LT(exp(a*t)*erfc(sqrt(a*t)), t, s) ==
            (1/(sqrt(a)*sqrt(s) + s), 0, True))
    assert LT(erfc(sqrt(a/t)/2), t, s) == (exp(-sqrt(a)*sqrt(s))/s, 0, True)
    # Bessel functions (laplace8.pdf)
    assert LT(besselj(0, a*t), t, s) == (1/sqrt(a**2 + s**2), 0, True)
    assert (LT(besselj(1, a*t), t, s, simplify=True) ==
            (a/(a**2 + s**2 + s*sqrt(a**2 + s**2)), 0, True))
    assert (LT(besselj(2, a*t), t, s, simplify=True) ==
            (a**2/(sqrt(a**2 + s**2)*(s + sqrt(a**2 + s**2))**2), 0, True))
    assert (LT(t*besselj(0, a*t), t, s) ==
            (s/(a**2 + s**2)**(S(3)/2), 0, True))
    assert (LT(t*besselj(1, a*t), t, s) ==
            (a/(a**2 + s**2)**(S(3)/2), 0, True))
    assert (LT(t**2*besselj(2, a*t), t, s) ==
            (3*a**2/(a**2 + s**2)**(S(5)/2), 0, True))
    assert LT(besselj(0, 2*sqrt(a*t)), t, s) == (exp(-a/s)/s, 0, True)
    assert (LT(t**(S(3)/2)*besselj(3, 2*sqrt(a*t)), t, s) ==
            (a**(S(3)/2)*exp(-a/s)/s**4, 0, True))
    assert (LT(besselj(0, a*sqrt(t**2+b*t)), t, s, simplify=True) ==
            (exp(b*(s - sqrt(a**2 + s**2)))/sqrt(a**2 + s**2), 0, True))
    assert LT(besseli(0, a*t), t, s) == (1/sqrt(-a**2 + s**2), a, True)
    assert (LT(besseli(1, a*t), t, s, simplify=True) ==
            (a/(-a**2 + s**2 + s*sqrt(-a**2 + s**2)), a, True))
    assert (LT(besseli(2, a*t), t, s, simplify=True) ==
            (a**2/(sqrt(-a**2 + s**2)*(s + sqrt(-a**2 + s**2))**2), a, True))
    assert LT(t*besseli(0, a*t), t, s) == (s/(-a**2 + s**2)**(S(3)/2), a, True)
    assert LT(t*besseli(1, a*t), t, s) == (a/(-a**2 + s**2)**(S(3)/2), a, True)
    assert (LT(t**2*besseli(2, a*t), t, s) ==
            (3*a**2/(-a**2 + s**2)**(S(5)/2), a, True))
    assert (LT(t**(S(3)/2)*besseli(3, 2*sqrt(a*t)), t, s) ==
            (a**(S(3)/2)*exp(a/s)/s**4, 0, True))
    assert (LT(bessely(0, a*t), t, s) ==
            (-2*asinh(s/a)/(pi*sqrt(a**2 + s**2)), 0, True))
    assert (LT(besselk(0, a*t), t, s) ==
            (log((s + sqrt(-a**2 + s**2))/a)/sqrt(-a**2 + s**2), -a, True))
    assert (LT(sin(a*t)**4, t, s, simplify=True) ==
            (24*a**4/(s*(64*a**4 + 20*a**2*s**2 + s**4)), 0, True))
    # Test general rules and unevaluated forms
    # These all also test whether issue #7219 is solved.
    assert LT(Heaviside(t-1)*cos(t-1), t, s) == (s*exp(-s)/(s**2 + 1), 0, True)
    assert LT(a*f(t), t, w) == (a*LaplaceTransform(f(t), t, w), -oo, True)
    assert (LT(a*Heaviside(t+1)*f(t+1), t, s) ==
            (a*LaplaceTransform(f(t + 1), t, s), -oo, True))
    assert (LT(a*Heaviside(t-1)*f(t-1), t, s) ==
            (a*LaplaceTransform(f(t), t, s)*exp(-s), -oo, True))
    assert (LT(b*f(t/a), t, s) ==
            (a*b*LaplaceTransform(f(t), t, a*s), -oo, True))
    assert LT(exp(-f(x)*t), t, s) == (1/(s + f(x)), -re(f(x)), True)
    assert (LT(exp(-a*t)*f(t), t, s) ==
            (LaplaceTransform(f(t), t, a + s), -oo, True))
    assert (LT(exp(-a*t)*erfc(sqrt(b/t)/2), t, s) ==
            (exp(-sqrt(b)*sqrt(a + s))/(a + s), -a, True))
    assert (LT(sinh(a*t)*f(t), t, s) ==
            (LaplaceTransform(f(t), t, -a + s)/2 -
             LaplaceTransform(f(t), t, a + s)/2, -oo, True))
    assert (LT(sinh(a*t)*t, t, s, simplify=True) ==
            (2*a*s/(a**4 - 2*a**2*s**2 + s**4), a, True))
    assert (LT(cosh(a*t)*f(t), t, s) ==
            (LaplaceTransform(f(t), t, -a + s)/2 +
             LaplaceTransform(f(t), t, a + s)/2, -oo, True))
    assert (LT(cosh(a*t)*t, t, s, simplify=True) ==
            (1/(2*(a + s)**2) + 1/(2*(a - s)**2), a, True))
    assert (LT(sin(a*t)*f(t), t, s, simplify=True) ==
            (I*(-LaplaceTransform(f(t), t, -I*a + s) +
                LaplaceTransform(f(t), t, I*a + s))/2, -oo, True))
    assert (LT(sin(f(t)), t, s) ==
            (LaplaceTransform(sin(f(t)), t, s), -oo, True))
    assert (LT(sin(a*t)*t, t, s, simplify=True) ==
            (2*a*s/(a**4 + 2*a**2*s**2 + s**4), 0, True))
    assert (LT(cos(a*t)*f(t), t, s) ==
            (LaplaceTransform(f(t), t, -I*a + s)/2 +
             LaplaceTransform(f(t), t, I*a + s)/2, -oo, True))
    assert (LT(cos(a*t)*t, t, s, simplify=True) ==
            ((-a**2 + s**2)/(a**4 + 2*a**2*s**2 + s**4), 0, True))
    L, plane, _ = LT(sin(a*t+b)**2*f(t), t, s)
    assert plane == -oo
    assert (
        -L + (
            LaplaceTransform(f(t), t, s)/2 -
            LaplaceTransform(f(t), t, -2*I*a + s)*exp(2*I*b)/4 -
            LaplaceTransform(f(t), t, 2*I*a + s)*exp(-2*I*b)/4)) == 0
    L = LT(sin(a*t+b)**2*f(t), t, s, noconds=True)
    assert (
        laplace_correspondence(L, {f: F}) ==
        F(s)/2 - F(-2*I*a + s)*exp(2*I*b)/4 -
        F(2*I*a + s)*exp(-2*I*b)/4)
    L, plane, _ = LT(sin(a*t)**3*cosh(b*t), t, s)
    assert plane == b
    assert (
        -L - 3*a/(8*(9*a**2 + b**2 + 2*b*s + s**2)) -
        3*a/(8*(9*a**2 + b**2 - 2*b*s + s**2)) +
        3*a/(8*(a**2 + b**2 + 2*b*s + s**2)) +
        3*a/(8*(a**2 + b**2 - 2*b*s + s**2))).simplify() == 0
    assert (LT(t**2*exp(-t**2), t, s) ==
            (sqrt(pi)*s**2*exp(s**2/4)*erfc(s/2)/8 - s/4 +
             sqrt(pi)*exp(s**2/4)*erfc(s/2)/4, 0, True))
    assert (LT((a*t**2 + b*t + c)*f(t), t, s) ==
            (a*Derivative(LaplaceTransform(f(t), t, s), (s, 2)) -
             b*Derivative(LaplaceTransform(f(t), t, s), s) +
            c*LaplaceTransform(f(t), t, s), -oo, True))
    assert (LT(t**np*g(t), t, s) ==
            ((-1)**np*Derivative(LaplaceTransform(g(t), t, s), (s, np)),
             -oo, True))
    # The following tests check whether _piecewise_to_heaviside works:
    x1 = Piecewise((0, t <= 0), (1, t <= 1), (0, True))
    X1 = LT(x1, t, s)[0]
    assert X1 == 1/s - exp(-s)/s
    y1 = ILT(X1, s, t)
    assert y1 == Heaviside(t) - Heaviside(t - 1)
    x1 = Piecewise((0, t <= 0), (t, t <= 1), (2-t, t <= 2), (0, True))
    X1 = LT(x1, t, s)[0].simplify()
    assert X1 == (exp(2*s) - 2*exp(s) + 1)*exp(-2*s)/s**2
    y1 = ILT(X1, s, t)
    assert (
        -y1 + t*Heaviside(t) + (t - 2)*Heaviside(t - 2) -
        2*(t - 1)*Heaviside(t - 1)).simplify() == 0
    x1 = Piecewise((exp(t), t <= 0), (1, t <= 1), (exp(-(t)), True))
    X1 = LT(x1, t, s)[0]
    assert X1 == exp(-1)*exp(-s)/(s + 1) + 1/s - exp(-s)/s
    y1 = ILT(X1, s, t)
    assert y1 == (
        exp(-1)*exp(1 - t)*Heaviside(t - 1) + Heaviside(t) - Heaviside(t - 1))
    x1 = Piecewise((0, x <= 0), (1, x <= 1), (0, True))
    X1 = LT(x1, t, s)[0]
    assert X1 == Piecewise((0, x <= 0), (1, x <= 1), (0, True))/s
    x1 = [
        a*Piecewise((1, And(t > 1, t <= 3)), (2, True)),
        a*Piecewise((1, And(t >= 1, t <= 3)), (2, True)),
        a*Piecewise((1, And(t >= 1, t < 3)), (2, True)),
        a*Piecewise((1, And(t > 1, t < 3)), (2, True))]
    for x2 in x1:
        assert LT(x2, t, s)[0].expand() == 2*a/s - a*exp(-s)/s + a*exp(-3*s)/s
    assert (
        LT(Piecewise((1, Eq(t, 1)), (2, True)), t, s)[0] ==
        LaplaceTransform(Piecewise((1, Eq(t, 1)), (2, True)), t, s))
    # The following lines test whether _laplace_transform successfully
    # removes Heaviside(1) before processing espressions. It fails if
    # Heaviside(t) remains because then meijerg functions will appear.
    X1 = 1/sqrt(a*s**2-b)
    x1 = ILT(X1, s, t)
    Y1 = LT(x1, t, s)[0]
    Z1 = (Y1**2/X1**2).simplify()
    assert Z1 == 1
    # The following two lines test whether issues #5813 and #7176 are solved.
    assert (LT(diff(f(t), (t, 1)), t, s, noconds=True) ==
            s*LaplaceTransform(f(t), t, s) - f(0))
    assert (LT(diff(f(t), (t, 3)), t, s, noconds=True) ==
            s**3*LaplaceTransform(f(t), t, s) - s**2*f(0) -
            s*Subs(Derivative(f(t), t), t, 0) -
            Subs(Derivative(f(t), (t, 2)), t, 0))
    # Issue #7219
    assert (LT(diff(f(x, t, w), t, 2), t, s) ==
            (s**2*LaplaceTransform(f(x, t, w), t, s) - s*f(x, 0, w) -
             Subs(Derivative(f(x, t, w), t), t, 0), -oo, True))
    # Issue #23307
    assert (LT(10*diff(f(t), (t, 1)), t, s, noconds=True) ==
            10*s*LaplaceTransform(f(t), t, s) - 10*f(0))
    assert (LT(a*f(b*t)+g(c*t), t, s, noconds=True) ==
            a*LaplaceTransform(f(t), t, s/b)/b +
            LaplaceTransform(g(t), t, s/c)/c)
    assert inverse_laplace_transform(
        f(w), w, t, plane=0) == InverseLaplaceTransform(f(w), w, t, 0)
    assert (LT(f(t)*g(t), t, s, noconds=True) ==
            LaplaceTransform(f(t)*g(t), t, s))
    # Issue #24294
    assert (LT(b*f(a*t), t, s, noconds=True) ==
            b*LaplaceTransform(f(t), t, s/a)/a)
    assert LT(3*exp(t)*Heaviside(t), t, s) == (3/(s - 1), 1, True)
    assert (LT(2*sin(t)*Heaviside(t), t, s, simplify=True) ==
            (2/(s**2 + 1), 0, True))
    # Issue #25293
    assert (
        LT((1/(t-1))*sin(4*pi*(t-1))*DiracDelta(t-1) *
           (Heaviside(t-1/4) - Heaviside(t-2)), t, s)[0] == 4*pi*exp(-s))
    # additional basic tests from wikipedia
    assert (LT((t - a)**b*exp(-c*(t - a))*Heaviside(t - a), t, s) ==
            ((c + s)**(-b - 1)*exp(-a*s)*gamma(b + 1), -c, True))
    assert (
        LT((exp(2*t)-1)*exp(-b-t)*Heaviside(t)/2, t, s, noconds=True,
           simplify=True) ==
        exp(-b)/(s**2 - 1))
    # DiracDelta function: standard cases
    assert LT(DiracDelta(t), t, s) == (1, -oo, True)
    assert LT(DiracDelta(a*t), t, s) == (1/a, -oo, True)
    assert LT(DiracDelta(t/42), t, s) == (42, -oo, True)
    assert LT(DiracDelta(t+42), t, s) == (0, -oo, True)
    assert (LT(DiracDelta(t)+DiracDelta(t-42), t, s) ==
            (1 + exp(-42*s), -oo, True))
    assert (LT(DiracDelta(t)-a*exp(-a*t), t, s, simplify=True) ==
            (s/(a + s), -a, True))
    assert (
        LT(exp(-t)*(DiracDelta(t)+DiracDelta(t-42)), t, s, simplify=True) ==
        (exp(-42*s - 42) + 1, -oo, True))
    assert LT(f(t)*DiracDelta(t-42), t, s) == (f(42)*exp(-42*s), -oo, True)
    assert LT(f(t)*DiracDelta(b*t-a), t, s) == (f(a/b)*exp(-a*s/b)/b,
                                                -oo, True)
    assert LT(f(t)*DiracDelta(b*t+a), t, s) == (0, -oo, True)
    # SingularityFunction
    assert LT(SingularityFunction(t, a, -1), t, s)[0] == exp(-a*s)
    assert LT(SingularityFunction(t, a, 1), t, s)[0] == exp(-a*s)/s**2
    assert LT(SingularityFunction(t, a, x), t, s)[0] == (
        LaplaceTransform(SingularityFunction(t, a, x), t, s))
    # Collection of cases that cannot be fully evaluated and/or would catch
    # some common implementation errors
    assert (LT(DiracDelta(t**2), t, s, noconds=True) ==
            LaplaceTransform(DiracDelta(t**2), t, s))
    assert LT(DiracDelta(t**2 - 1), t, s) == (exp(-s)/2, -oo, True)
    assert LT(DiracDelta(t*(1 - t)), t, s) == (1 - exp(-s), -oo, True)
    assert (LT((DiracDelta(t) + 1)*(DiracDelta(t - 1) + 1), t, s) ==
            (LaplaceTransform(DiracDelta(t)*DiracDelta(t - 1), t, s) +
             1 + exp(-s) + 1/s, 0, True))
    assert LT(DiracDelta(2*t-2*exp(a)), t, s) == (exp(-s*exp(a))/2, -oo, True)
    assert LT(DiracDelta(-2*t+2*exp(a)), t, s) == (exp(-s*exp(a))/2, -oo, True)
    # Heaviside tests
    assert LT(Heaviside(t), t, s) == (1/s, 0, True)
    assert LT(Heaviside(t - a), t, s) == (exp(-a*s)/s, 0, True)
    assert LT(Heaviside(t-1), t, s) == (exp(-s)/s, 0, True)
    assert LT(Heaviside(2*t-4), t, s) == (exp(-2*s)/s, 0, True)
    assert LT(Heaviside(2*t+4), t, s) == (1/s, 0, True)
    assert (LT(Heaviside(-2*t+4), t, s, simplify=True) ==
            (1/s - exp(-2*s)/s, 0, True))
    assert (LT(g(t)*Heaviside(t - w), t, s) ==
            (LaplaceTransform(g(t)*Heaviside(t - w), t, s), -oo, True))
    assert (
        LT(Heaviside(t-a)*g(t), t, s) ==
        (LaplaceTransform(g(a + t), t, s)*exp(-a*s), -oo, True))
    assert (
        LT(Heaviside(t+a)*g(t), t, s) ==
        (LaplaceTransform(g(t), t, s), -oo, True))
    assert (
        LT(Heaviside(-t+a)*g(t), t, s) ==
        (LaplaceTransform(g(t), t, s) -
         LaplaceTransform(g(a + t), t, s)*exp(-a*s), -oo, True))
    assert (
        LT(Heaviside(-t-a)*g(t), t, s) == (0, 0, True))
    # Fresnel functions
    assert (laplace_transform(fresnels(t), t, s, simplify=True) ==
            ((-sin(s**2/(2*pi))*fresnels(s/pi) +
              sqrt(2)*sin(s**2/(2*pi) + pi/4)/2 -
              cos(s**2/(2*pi))*fresnelc(s/pi))/s, 0, True))
    assert (laplace_transform(fresnelc(t), t, s, simplify=True) ==
            ((sin(s**2/(2*pi))*fresnelc(s/pi) -
              cos(s**2/(2*pi))*fresnels(s/pi) +
              sqrt(2)*cos(s**2/(2*pi) + pi/4)/2)/s, 0, True))
    # Matrix tests
    Mt = Matrix([[exp(t), t*exp(-t)], [t*exp(-t), exp(t)]])
    Ms = Matrix([[1/(s - 1), (s + 1)**(-2)],
                 [(s + 1)**(-2),     1/(s - 1)]])
    # The default behaviour for Laplace transform of a Matrix returns a Matrix
    # of Tuples and is deprecated:
    with warns_deprecated_sympy():
        Ms_conds = Matrix(
            [[(1/(s - 1), 1, True), ((s + 1)**(-2), -1, True)],
             [((s + 1)**(-2), -1, True), (1/(s - 1), 1, True)]])
    with warns_deprecated_sympy():
        assert LT(Mt, t, s) == Ms_conds
    # The new behavior is to return a tuple of a Matrix and the convergence
    # conditions for the matrix as a whole:
    assert LT(Mt, t, s, legacy_matrix=False) == (Ms, 1, True)
    # With noconds=True the transformed matrix is returned without conditions
    # either way:
    assert LT(Mt, t, s, noconds=True) == Ms
    assert LT(Mt, t, s, legacy_matrix=False, noconds=True) == Ms


@slow
def test_inverse_laplace_transform():
    s = symbols('s')
    k, n, t = symbols('k, n, t', real=True)
    a, b, c, d = symbols('a, b, c, d', positive=True)
    f = Function('f')
    F = Function('F')

    def ILT(g):
        return inverse_laplace_transform(g, s, t)

    def ILTS(g):
        return inverse_laplace_transform(g, s, t, simplify=True)

    def ILTF(g):
        return laplace_correspondence(
            inverse_laplace_transform(g, s, t), {f: F})

    # Tests for the rules in Bateman54.

    # Section 4.1: Some of the Laplace transform rules can also be used well
    #     in the inverse transform.
    assert ILTF(exp(-a*s)*F(s)) == f(-a + t)
    assert ILTF(k*F(s-a)) == k*f(t)*exp(-a*t)
    assert ILTF(diff(F(s), s, 3)) == -t**3*f(t)
    assert ILTF(diff(F(s), s, 4)) == t**4*f(t)

    # Section 5.1: Most rules are impractical for a computer algebra system.

    # Section 5.2: Rational functions
    assert ILT(2) == 2*DiracDelta(t)
    assert ILT(1/s) == Heaviside(t)
    assert ILT(1/s**2) == t*Heaviside(t)
    assert ILT(1/s**5) == t**4*Heaviside(t)/24
    assert ILT(1/s**n) == t**(n - 1)*Heaviside(t)/gamma(n)
    assert ILT(a/(a + s)) == a*exp(-a*t)*Heaviside(t)
    assert ILT(s/(a + s)) == -a*exp(-a*t)*Heaviside(t) + DiracDelta(t)
    assert (ILT(b*s/(s+a)**2) ==
            b*(-a*t*exp(-a*t)*Heaviside(t) + exp(-a*t)*Heaviside(t)))
    assert (ILTS(c/((s+a)*(s+b))) ==
            c*(exp(a*t) - exp(b*t))*exp(-t*(a + b))*Heaviside(t)/(a - b))
    assert (ILTS(c*s/((s+a)*(s+b))) ==
            c*(a*exp(b*t) - b*exp(a*t))*exp(-t*(a + b))*Heaviside(t)/(a - b))
    assert ILTS(s/(a + s)**3) == t*(-a*t + 2)*exp(-a*t)*Heaviside(t)/2
    assert ILTS(1/(s*(a + s)**3)) == (
        -a**2*t**2 - 2*a*t + 2*exp(a*t) - 2)*exp(-a*t)*Heaviside(t)/(2*a**3)
    assert ILT(1/(s*(a + s)**n)) == (
        Heaviside(t)*lowergamma(n, a*t)/(a**n*gamma(n)))
    assert ILT((s-a)**(-b)) == t**(b - 1)*exp(a*t)*Heaviside(t)/gamma(b)
    assert ILT((a + s)**(-2)) == t*exp(-a*t)*Heaviside(t)
    assert ILT((a + s)**(-5)) == t**4*exp(-a*t)*Heaviside(t)/24
    assert ILT(s**2/(s**2 + 1)) == -sin(t)*Heaviside(t) + DiracDelta(t)
    assert ILT(1 - 1/(s**2 + 1)) == -sin(t)*Heaviside(t) + DiracDelta(t)
    assert ILT(a/(a**2 + s**2)) == sin(a*t)*Heaviside(t)
    assert ILT(s/(s**2 + a**2)) == cos(a*t)*Heaviside(t)
    assert ILT(b/(b**2 + (a + s)**2)) == exp(-a*t)*sin(b*t)*Heaviside(t)
    assert (ILT(b*s/(b**2 + (a + s)**2)) ==
            b*(-a*exp(-a*t)*sin(b*t)/b + exp(-a*t)*cos(b*t))*Heaviside(t))
    assert ILT(1/(s**2*(s**2 + 1))) == t*Heaviside(t) - sin(t)*Heaviside(t)
    assert (ILTS(c*s/(d**2*(s+a)**2+b**2)) ==
            c*(-a*d*sin(b*t/d) + b*cos(b*t/d))*exp(-a*t)*Heaviside(t)/(b*d**2))
    assert ILTS((b*s**2 + d)/(a**2 + s**2)**2) == (
        2*a**2*b*sin(a*t) + (a**2*b - d)*(a*t*cos(a*t) -
                                          sin(a*t)))*Heaviside(t)/(2*a**3)
    assert ILTS(b/(s**2-a**2)) == b*sinh(a*t)*Heaviside(t)/a
    assert (ILT(b/(s**2-a**2)) ==
            b*(exp(a*t)*Heaviside(t)/(2*a) - exp(-a*t)*Heaviside(t)/(2*a)))
    assert ILTS(b*s/(s**2-a**2)) == b*cosh(a*t)*Heaviside(t)
    assert (ILT(b/(s*(s+a))) ==
            b*(Heaviside(t)/a - exp(-a*t)*Heaviside(t)/a))
    # Issue #24424
    assert (ILTS((s + 8)/((s + 2)*(s**2 + 2*s + 10))) ==
            ((8*sin(3*t) - 9*cos(3*t))*exp(t) + 9)*exp(-2*t)*Heaviside(t)/15)
    # Issue #8514; this is not important anymore, since this function
    # is not solved by integration anymore
    assert (ILT(1/(a*s**2+b*s+c)) ==
            2*exp(-b*t/(2*a))*sin(t*sqrt(4*a*c - b**2)/(2*a)) *
            Heaviside(t)/sqrt(4*a*c - b**2))

    # Section 5.3: Irrational algebraic functions
    assert (  # (1)
        ILT(1/sqrt(s)/(b*s-a)) ==
        exp(a*t/b)*Heaviside(t)*erf(sqrt(a)*sqrt(t)/sqrt(b))/(sqrt(a)*sqrt(b)))
    assert (  # (2)
        ILT(1/sqrt(k*s)/(c*s-a)/s) ==
        (-2*c*sqrt(t)/(sqrt(pi)*a) +
         c**(S(3)/2)*exp(a*t/c)*erf(sqrt(a)*sqrt(t)/sqrt(c))/a**(S(3)/2)) *
        Heaviside(t)/(c*sqrt(k)))
    assert (  # (4)
        ILT(1/(sqrt(c*s)+a)) == (-a*exp(a**2*t/c)*erfc(a*sqrt(t)/sqrt(c))/c +
                                 1/(sqrt(pi)*sqrt(c)*sqrt(t)))*Heaviside(t))
    assert (  # (5)
        ILT(a/s/(b*sqrt(s)+a)) ==
        (-exp(a**2*t/b**2)*erfc(a*sqrt(t)/b) + 1)*Heaviside(t))
    assert (  # (6)
            ILT((a-b)*sqrt(s)/(sqrt(s)+sqrt(a))/(s-b)) ==
            (sqrt(a)*sqrt(b)*exp(b*t)*erfc(sqrt(b)*sqrt(t)) +
             a*exp(a*t)*erfc(sqrt(a)*sqrt(t)) - b*exp(b*t))*Heaviside(t))
    assert (  # (7)
            ILT(1/sqrt(s)/(sqrt(b*s)+a)) ==
            exp(a**2*t/b)*Heaviside(t)*erfc(a*sqrt(t)/sqrt(b))/sqrt(b))
    assert (  # (8)
            ILT(a**2/(sqrt(s)+a)/s**(S(3)/2)) ==
            (2*a*sqrt(t)/sqrt(pi) + exp(a**2*t)*erfc(a*sqrt(t)) - 1) *
            Heaviside(t))
    assert (  # (9)
            ILT((a-b)*sqrt(b)/(s-b)/sqrt(s)/(sqrt(s)+sqrt(a))) ==
            (sqrt(a)*exp(b*t)*erf(sqrt(b)*sqrt(t)) +
             sqrt(b)*exp(a*t)*erfc(sqrt(a)*sqrt(t)) -
             sqrt(b)*exp(b*t))*Heaviside(t))
    assert (  # (10)
            ILT(1/(sqrt(s)+sqrt(a))**2) ==
            (-2*sqrt(a)*sqrt(t)/sqrt(pi) +
             (-2*a*t + 1)*(erf(sqrt(a)*sqrt(t)) -
                           1)*exp(a*t) + 1)*Heaviside(t))
    assert (  # (11)
            ILT(1/(sqrt(s)+sqrt(a))**2/s) ==
            ((2*t - 1/a)*exp(a*t)*erfc(sqrt(a)*sqrt(t)) + 1/a -
             2*sqrt(t)/(sqrt(pi)*sqrt(a)))*Heaviside(t))
    assert (  # (12)
            ILT(1/(sqrt(s)+a)**2/sqrt(s)) ==
            (-2*a*t*exp(a**2*t)*erfc(a*sqrt(t)) +
             2*sqrt(t)/sqrt(pi))*Heaviside(t))
    assert (  # (13)
            ILT(1/(sqrt(s)+a)**3) ==
            (-a*t*(2*a**2*t + 3)*exp(a**2*t)*erfc(a*sqrt(t)) +
             2*sqrt(t)*(a**2*t + 1)/sqrt(pi))*Heaviside(t))
    x = (
        - ILT(sqrt(s)/(sqrt(s)+a)**3) +
        2*(sqrt(pi)*a**2*t*(-2*sqrt(pi)*erfc(a*sqrt(t)) +
                            2*exp(-a**2*t)/(a*sqrt(t))) *
           (-a**4*t**2 - 5*a**2*t/2 - S.Half) * exp(a**2*t)/2 +
           sqrt(pi)*a*sqrt(t)*(a**2*t + 1)/2) *
        Heaviside(t)/(pi*a**2*t)).simplify()
    assert (  # (14)
            x == 0)
    x = (
        - ILT(1/sqrt(s)/(sqrt(s)+a)**3) +
        Heaviside(t)*(sqrt(t)*((2*a**2*t + 1) *
                               (sqrt(pi)*a*sqrt(t)*exp(a**2*t) *
                                erfc(a*sqrt(t)) - 1) + 1) /
                      (sqrt(pi)*a))).simplify()
    assert (  # (15)
            x == 0)
    assert (  # (16)
            factor_terms(ILT(3/(sqrt(s)+a)**4)) ==
            3*(-2*a**3*t**(S(5)/2)*(2*a**2*t + 5)/(3*sqrt(pi)) +
               t*(4*a**4*t**2 + 12*a**2*t + 3)*exp(a**2*t) *
               erfc(a*sqrt(t))/3)*Heaviside(t))
    assert (  # (17)
            ILT((sqrt(s)-a)/(s*(sqrt(s)+a))) ==
            (2*exp(a**2*t)*erfc(a*sqrt(t))-1)*Heaviside(t))
    assert (  # (18)
            ILT((sqrt(s)-a)**2/(s*(sqrt(s)+a)**2)) == (
                1 + 8*a**2*t*exp(a**2*t)*erfc(a*sqrt(t)) -
                8/sqrt(pi)*a*sqrt(t))*Heaviside(t))
    assert (  # (19)
            ILT((sqrt(s)-a)**3/(s*(sqrt(s)+a)**3)) == Heaviside(t)*(
                2*(8*a**4*t**2+8*a**2*t+1)*exp(a**2*t) *
                erfc(a*sqrt(t))-8/sqrt(pi)*a*sqrt(t)*(2*a**2*t+1)-1))
    assert (  # (22)
            ILT(sqrt(s+a)/(s+b)) == Heaviside(t)*(
                exp(-a*t)/sqrt(t)/sqrt(pi) +
                sqrt(a-b)*exp(-b*t)*erf(sqrt(a-b)*sqrt(t))))
    assert (  # (23)
            ILT(1/sqrt(s+b)/(s+a)) == Heaviside(t)*(
                1/sqrt(b-a)*exp(-a*t)*erf(sqrt(b-a)*sqrt(t))))
    assert (  # (35)
            ILT(1/sqrt(s**2+a**2)) == Heaviside(t)*(
                besselj(0, a*t)))
    assert (  # (44)
            ILT(1/sqrt(s**2-a**2)) == Heaviside(t)*(
                besseli(0, a*t)))

    # Miscellaneous tests
    # Can _inverse_laplace_time_shift deal with positive exponents?
    assert (
        - ILT((s**2*exp(2*s) + 4*exp(s) - 4)*exp(-2*s)/(s*(s**2 + 1))) +
        cos(t)*Heaviside(t) + 4*cos(t - 2)*Heaviside(t - 2) -
        4*cos(t - 1)*Heaviside(t - 1) - 4*Heaviside(t - 2) +
        4*Heaviside(t - 1)).simplify() == 0


@slow
def test_inverse_laplace_transform_old():
    from sympy.functions.special.delta_functions import DiracDelta
    ILT = inverse_laplace_transform
    a, b, c, d = symbols('a b c d', positive=True)
    n, r = symbols('n, r', real=True)
    t, z = symbols('t z')
    f = Function('f')
    F = Function('F')

    def simp_hyp(expr):
        return factor_terms(expand_mul(expr)).rewrite(sin)

    L = ILT(F(s), s, t)
    assert laplace_correspondence(L, {f: F}) == f(t)
    assert ILT(exp(-a*s)/s, s, t) == Heaviside(-a + t)
    assert ILT(exp(-a*s)/(b + s), s, t) == exp(-b*(-a + t))*Heaviside(-a + t)
    assert (ILT((b + s)/(a**2 + (b + s)**2), s, t) ==
            exp(-b*t)*cos(a*t)*Heaviside(t))
    assert (ILT(exp(-a*s)/s**b, s, t) ==
            (-a + t)**(b - 1)*Heaviside(-a + t)/gamma(b))
    assert (ILT(exp(-a*s)/sqrt(s**2 + 1), s, t) ==
            Heaviside(-a + t)*besselj(0, a - t))
    assert ILT(1/(s*sqrt(s + 1)), s, t) == Heaviside(t)*erf(sqrt(t))
    # TODO sinh/cosh shifted come out a mess. also delayed trig is a mess
    # TODO should this simplify further?
    assert (ILT(exp(-a*s)/s**b, s, t) ==
            (t - a)**(b - 1)*Heaviside(t - a)/gamma(b))
    assert (ILT(exp(-a*s)/sqrt(1 + s**2), s, t) ==
            Heaviside(t - a)*besselj(0, a - t))  # note: besselj(0, x) is even
    # XXX ILT turns these branch factor into trig functions ...
    assert (
        simplify(ILT(a**b*(s + sqrt(s**2 - a**2))**(-b)/sqrt(s**2 - a**2),
                     s, t).rewrite(exp)) ==
        Heaviside(t)*besseli(b, a*t))
    assert (
        ILT(a**b*(s + sqrt(s**2 + a**2))**(-b)/sqrt(s**2 + a**2),
            s, t, simplify=True).rewrite(exp) ==
        Heaviside(t)*besselj(b, a*t))
    assert ILT(1/(s*sqrt(s + 1)), s, t) == Heaviside(t)*erf(sqrt(t))
    # TODO can we make erf(t) work?
    assert (ILT((s * eye(2) - Matrix([[1, 0], [0, 2]])).inv(), s, t) ==
            Matrix([[exp(t)*Heaviside(t), 0], [0, exp(2*t)*Heaviside(t)]]))
    # Test time_diff rule
    assert (ILT(s**42*f(s), s, t) ==
            Derivative(InverseLaplaceTransform(f(s), s, t, None), (t, 42)))
    assert ILT(cos(s), s, t) == InverseLaplaceTransform(cos(s), s, t, None)
    # Rules for testing different DiracDelta cases
    assert (ILT(2*exp(3*s) - 5*exp(-7*s), s, t) ==
            2*InverseLaplaceTransform(exp(3*s), s, t, None) -
            5*DiracDelta(t - 7))
    a = cos(sin(7)/2)
    assert ILT(a*exp(-3*s), s, t) == a*DiracDelta(t - 3)
    assert ILT(exp(2*s), s, t) == InverseLaplaceTransform(exp(2*s), s, t, None)
    r = Symbol('r', real=True)
    assert ILT(exp(r*s), s, t) == InverseLaplaceTransform(exp(r*s), s, t, None)
    # Rules for testing whether Heaviside(t) is treated properly in diff rule
    assert ILT(s**2/(a**2 + s**2), s, t) == (
        -a*sin(a*t)*Heaviside(t) + DiracDelta(t))
    assert ILT(s**2*(f(s) + 1/(a**2 + s**2)), s, t) == (
        -a*sin(a*t)*Heaviside(t) + DiracDelta(t) +
        Derivative(InverseLaplaceTransform(f(s), s, t, None), (t, 2)))
    # Rules from the previous test_inverse_laplace_transform_delta_cond():
    assert (ILT(exp(r*s), s, t, noconds=False) ==
            (InverseLaplaceTransform(exp(r*s), s, t, None), True))
    # inversion does not exist: verify it doesn't evaluate to DiracDelta
    for z in (Symbol('z', extended_real=False),
              Symbol('z', imaginary=True, zero=False)):
        f = ILT(exp(z*s), s, t, noconds=False)
        f = f[0] if isinstance(f, tuple) else f
        assert f.func != DiracDelta


@slow
def test_expint():
    x = Symbol('x')
    a = Symbol('a')
    u = Symbol('u', polar=True)

    # TODO LT of Si, Shi, Chi is a mess ...
    assert laplace_transform(Ci(x), x, s) == (-log(1 + s**2)/2/s, 0, True)
    assert (laplace_transform(expint(a, x), x, s, simplify=True) ==
            (lerchphi(s*exp_polar(I*pi), 1, a), 0, re(a) > S.Zero))
    assert (laplace_transform(expint(1, x), x, s, simplify=True) ==
            (log(s + 1)/s, 0, True))
    assert (laplace_transform(expint(2, x), x, s, simplify=True) ==
            ((s - log(s + 1))/s**2, 0, True))
    assert (inverse_laplace_transform(-log(1 + s**2)/2/s, s, u).expand() ==
            Heaviside(u)*Ci(u))
    assert (
        inverse_laplace_transform(log(s + 1)/s, s, x,
                                  simplify=True).rewrite(expint) ==
        Heaviside(x)*E1(x))
    assert (
        inverse_laplace_transform(
            (s - log(s + 1))/s**2, s, x,
            simplify=True).rewrite(expint).expand() ==
        (expint(2, x)*Heaviside(x)).rewrite(Ei).rewrite(expint).expand())