File size: 12,750 Bytes
6a86ad5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
from sympy.core import S
from sympy.core.function import Function, ArgumentIndexError
from sympy.core.symbol import Dummy, uniquely_named_symbol
from sympy.functions.special.gamma_functions import gamma, digamma
from sympy.functions.combinatorial.numbers import catalan
from sympy.functions.elementary.complexes import conjugate

# See mpmath #569 and SymPy #20569
def betainc_mpmath_fix(a, b, x1, x2, reg=0):
    from mpmath import betainc, mpf
    if x1 == x2:
        return mpf(0)
    else:
        return betainc(a, b, x1, x2, reg)

###############################################################################
############################ COMPLETE BETA  FUNCTION ##########################
###############################################################################

class beta(Function):
    r"""
    The beta integral is called the Eulerian integral of the first kind by
    Legendre:

    .. math::
        \mathrm{B}(x,y)  \int^{1}_{0} t^{x-1} (1-t)^{y-1} \mathrm{d}t.

    Explanation
    ===========

    The Beta function or Euler's first integral is closely associated
    with the gamma function. The Beta function is often used in probability
    theory and mathematical statistics. It satisfies properties like:

    .. math::
        \mathrm{B}(a,1) = \frac{1}{a} \\
        \mathrm{B}(a,b) = \mathrm{B}(b,a)  \\
        \mathrm{B}(a,b) = \frac{\Gamma(a) \Gamma(b)}{\Gamma(a+b)}

    Therefore for integral values of $a$ and $b$:

    .. math::
        \mathrm{B} = \frac{(a-1)! (b-1)!}{(a+b-1)!}

    A special case of the Beta function when `x = y` is the
    Central Beta function. It satisfies properties like:

    .. math::
        \mathrm{B}(x) = 2^{1 - 2x}\mathrm{B}(x, \frac{1}{2})
        \mathrm{B}(x) = 2^{1 - 2x} cos(\pi x) \mathrm{B}(\frac{1}{2} - x, x)
        \mathrm{B}(x) = \int_{0}^{1} \frac{t^x}{(1 + t)^{2x}} dt
        \mathrm{B}(x) = \frac{2}{x} \prod_{n = 1}^{\infty} \frac{n(n + 2x)}{(n + x)^2}

    Examples
    ========

    >>> from sympy import I, pi
    >>> from sympy.abc import x, y

    The Beta function obeys the mirror symmetry:

    >>> from sympy import beta, conjugate
    >>> conjugate(beta(x, y))
    beta(conjugate(x), conjugate(y))

    Differentiation with respect to both $x$ and $y$ is supported:

    >>> from sympy import beta, diff
    >>> diff(beta(x, y), x)
    (polygamma(0, x) - polygamma(0, x + y))*beta(x, y)

    >>> diff(beta(x, y), y)
    (polygamma(0, y) - polygamma(0, x + y))*beta(x, y)

    >>> diff(beta(x), x)
    2*(polygamma(0, x) - polygamma(0, 2*x))*beta(x, x)

    We can numerically evaluate the Beta function to
    arbitrary precision for any complex numbers x and y:

    >>> from sympy import beta
    >>> beta(pi).evalf(40)
    0.02671848900111377452242355235388489324562

    >>> beta(1 + I).evalf(20)
    -0.2112723729365330143 - 0.7655283165378005676*I

    See Also
    ========

    gamma: Gamma function.
    uppergamma: Upper incomplete gamma function.
    lowergamma: Lower incomplete gamma function.
    polygamma: Polygamma function.
    loggamma: Log Gamma function.
    digamma: Digamma function.
    trigamma: Trigamma function.

    References
    ==========

    .. [1] https://en.wikipedia.org/wiki/Beta_function
    .. [2] https://mathworld.wolfram.com/BetaFunction.html
    .. [3] https://dlmf.nist.gov/5.12

    """
    unbranched = True

    def fdiff(self, argindex):
        x, y = self.args
        if argindex == 1:
            # Diff wrt x
            return beta(x, y)*(digamma(x) - digamma(x + y))
        elif argindex == 2:
            # Diff wrt y
            return beta(x, y)*(digamma(y) - digamma(x + y))
        else:
            raise ArgumentIndexError(self, argindex)

    @classmethod
    def eval(cls, x, y=None):
        if y is None:
            return beta(x, x)
        if x.is_Number and y.is_Number:
            return beta(x, y, evaluate=False).doit()

    def doit(self, **hints):
        x = xold = self.args[0]
        # Deal with unevaluated single argument beta
        single_argument = len(self.args) == 1
        y = yold = self.args[0] if single_argument else self.args[1]
        if hints.get('deep', True):
            x = x.doit(**hints)
            y = y.doit(**hints)
        if y.is_zero or x.is_zero:
            return S.ComplexInfinity
        if y is S.One:
            return 1/x
        if x is S.One:
            return 1/y
        if y == x + 1:
            return 1/(x*y*catalan(x))
        s = x + y
        if (s.is_integer and s.is_negative and x.is_integer is False and
            y.is_integer is False):
            return S.Zero
        if x == xold and y == yold and not single_argument:
            return self
        return beta(x, y)

    def _eval_expand_func(self, **hints):
        x, y = self.args
        return gamma(x)*gamma(y) / gamma(x + y)

    def _eval_is_real(self):
        return self.args[0].is_real and self.args[1].is_real

    def _eval_conjugate(self):
        return self.func(self.args[0].conjugate(), self.args[1].conjugate())

    def _eval_rewrite_as_gamma(self, x, y, piecewise=True, **kwargs):
        return self._eval_expand_func(**kwargs)

    def _eval_rewrite_as_Integral(self, x, y, **kwargs):
        from sympy.integrals.integrals import Integral
        t = Dummy(uniquely_named_symbol('t', [x, y]).name)
        return Integral(t**(x - 1)*(1 - t)**(y - 1), (t, 0, 1))

###############################################################################
########################## INCOMPLETE BETA FUNCTION ###########################
###############################################################################

class betainc(Function):
    r"""
    The Generalized Incomplete Beta function is defined as

    .. math::
        \mathrm{B}_{(x_1, x_2)}(a, b) = \int_{x_1}^{x_2} t^{a - 1} (1 - t)^{b - 1} dt

    The Incomplete Beta function is a special case
    of the Generalized Incomplete Beta function :

    .. math:: \mathrm{B}_z (a, b) = \mathrm{B}_{(0, z)}(a, b)

    The Incomplete Beta function satisfies :

    .. math:: \mathrm{B}_z (a, b) = (-1)^a \mathrm{B}_{\frac{z}{z - 1}} (a, 1 - a - b)

    The Beta function is a special case of the Incomplete Beta function :

    .. math:: \mathrm{B}(a, b) = \mathrm{B}_{1}(a, b)

    Examples
    ========

    >>> from sympy import betainc, symbols, conjugate
    >>> a, b, x, x1, x2 = symbols('a b x x1 x2')

    The Generalized Incomplete Beta function is given by:

    >>> betainc(a, b, x1, x2)
    betainc(a, b, x1, x2)

    The Incomplete Beta function can be obtained as follows:

    >>> betainc(a, b, 0, x)
    betainc(a, b, 0, x)

    The Incomplete Beta function obeys the mirror symmetry:

    >>> conjugate(betainc(a, b, x1, x2))
    betainc(conjugate(a), conjugate(b), conjugate(x1), conjugate(x2))

    We can numerically evaluate the Incomplete Beta function to
    arbitrary precision for any complex numbers a, b, x1 and x2:

    >>> from sympy import betainc, I
    >>> betainc(2, 3, 4, 5).evalf(10)
    56.08333333
    >>> betainc(0.75, 1 - 4*I, 0, 2 + 3*I).evalf(25)
    0.2241657956955709603655887 + 0.3619619242700451992411724*I

    The Generalized Incomplete Beta function can be expressed
    in terms of the Generalized Hypergeometric function.

    >>> from sympy import hyper
    >>> betainc(a, b, x1, x2).rewrite(hyper)
    (-x1**a*hyper((a, 1 - b), (a + 1,), x1) + x2**a*hyper((a, 1 - b), (a + 1,), x2))/a

    See Also
    ========

    beta: Beta function
    hyper: Generalized Hypergeometric function

    References
    ==========

    .. [1] https://en.wikipedia.org/wiki/Beta_function#Incomplete_beta_function
    .. [2] https://dlmf.nist.gov/8.17
    .. [3] https://functions.wolfram.com/GammaBetaErf/Beta4/
    .. [4] https://functions.wolfram.com/GammaBetaErf/BetaRegularized4/02/

    """
    nargs = 4
    unbranched = True

    def fdiff(self, argindex):
        a, b, x1, x2 = self.args
        if argindex == 3:
            # Diff wrt x1
            return -(1 - x1)**(b - 1)*x1**(a - 1)
        elif argindex == 4:
            # Diff wrt x2
            return (1 - x2)**(b - 1)*x2**(a - 1)
        else:
            raise ArgumentIndexError(self, argindex)

    def _eval_mpmath(self):
        return betainc_mpmath_fix, self.args

    def _eval_is_real(self):
        if all(arg.is_real for arg in self.args):
            return True

    def _eval_conjugate(self):
        return self.func(*map(conjugate, self.args))

    def _eval_rewrite_as_Integral(self, a, b, x1, x2, **kwargs):
        from sympy.integrals.integrals import Integral
        t = Dummy(uniquely_named_symbol('t', [a, b, x1, x2]).name)
        return Integral(t**(a - 1)*(1 - t)**(b - 1), (t, x1, x2))

    def _eval_rewrite_as_hyper(self, a, b, x1, x2, **kwargs):
        from sympy.functions.special.hyper import hyper
        return (x2**a * hyper((a, 1 - b), (a + 1,), x2) - x1**a * hyper((a, 1 - b), (a + 1,), x1)) / a

###############################################################################
#################### REGULARIZED INCOMPLETE BETA FUNCTION #####################
###############################################################################

class betainc_regularized(Function):
    r"""
    The Generalized Regularized Incomplete Beta function is given by

    .. math::
        \mathrm{I}_{(x_1, x_2)}(a, b) = \frac{\mathrm{B}_{(x_1, x_2)}(a, b)}{\mathrm{B}(a, b)}

    The Regularized Incomplete Beta function is a special case
    of the Generalized Regularized Incomplete Beta function :

    .. math:: \mathrm{I}_z (a, b) = \mathrm{I}_{(0, z)}(a, b)

    The Regularized Incomplete Beta function is the cumulative distribution
    function of the beta distribution.

    Examples
    ========

    >>> from sympy import betainc_regularized, symbols, conjugate
    >>> a, b, x, x1, x2 = symbols('a b x x1 x2')

    The Generalized Regularized Incomplete Beta
    function is given by:

    >>> betainc_regularized(a, b, x1, x2)
    betainc_regularized(a, b, x1, x2)

    The Regularized Incomplete Beta function
    can be obtained as follows:

    >>> betainc_regularized(a, b, 0, x)
    betainc_regularized(a, b, 0, x)

    The Regularized Incomplete Beta function
    obeys the mirror symmetry:

    >>> conjugate(betainc_regularized(a, b, x1, x2))
    betainc_regularized(conjugate(a), conjugate(b), conjugate(x1), conjugate(x2))

    We can numerically evaluate the Regularized Incomplete Beta function
    to arbitrary precision for any complex numbers a, b, x1 and x2:

    >>> from sympy import betainc_regularized, pi, E
    >>> betainc_regularized(1, 2, 0, 0.25).evalf(10)
    0.4375000000
    >>> betainc_regularized(pi, E, 0, 1).evalf(5)
    1.00000

    The Generalized Regularized Incomplete Beta function can be
    expressed in terms of the Generalized Hypergeometric function.

    >>> from sympy import hyper
    >>> betainc_regularized(a, b, x1, x2).rewrite(hyper)
    (-x1**a*hyper((a, 1 - b), (a + 1,), x1) + x2**a*hyper((a, 1 - b), (a + 1,), x2))/(a*beta(a, b))

    See Also
    ========

    beta: Beta function
    hyper: Generalized Hypergeometric function

    References
    ==========

    .. [1] https://en.wikipedia.org/wiki/Beta_function#Incomplete_beta_function
    .. [2] https://dlmf.nist.gov/8.17
    .. [3] https://functions.wolfram.com/GammaBetaErf/Beta4/
    .. [4] https://functions.wolfram.com/GammaBetaErf/BetaRegularized4/02/

    """
    nargs = 4
    unbranched = True

    def __new__(cls, a, b, x1, x2):
        return Function.__new__(cls, a, b, x1, x2)

    def _eval_mpmath(self):
        return betainc_mpmath_fix, (*self.args, S(1))

    def fdiff(self, argindex):
        a, b, x1, x2 = self.args
        if argindex == 3:
            # Diff wrt x1
            return -(1 - x1)**(b - 1)*x1**(a - 1) / beta(a, b)
        elif argindex == 4:
            # Diff wrt x2
            return (1 - x2)**(b - 1)*x2**(a - 1) / beta(a, b)
        else:
            raise ArgumentIndexError(self, argindex)

    def _eval_is_real(self):
        if all(arg.is_real for arg in self.args):
            return True

    def _eval_conjugate(self):
        return self.func(*map(conjugate, self.args))

    def _eval_rewrite_as_Integral(self, a, b, x1, x2, **kwargs):
        from sympy.integrals.integrals import Integral
        t = Dummy(uniquely_named_symbol('t', [a, b, x1, x2]).name)
        integrand = t**(a - 1)*(1 - t)**(b - 1)
        expr = Integral(integrand, (t, x1, x2))
        return expr / Integral(integrand, (t, 0, 1))

    def _eval_rewrite_as_hyper(self, a, b, x1, x2, **kwargs):
        from sympy.functions.special.hyper import hyper
        expr = (x2**a * hyper((a, 1 - b), (a + 1,), x2) - x1**a * hyper((a, 1 - b), (a + 1,), x1)) / a
        return expr / beta(a, b)