from fastapi import APIRouter from datetime import datetime from datasets import load_dataset from sklearn.metrics import accuracy_score import random from .utils.evaluation import TextEvaluationRequest from .utils.emissions import tracker, clean_emissions_data, get_space_info router = APIRouter() DESCRIPTION = "Random Baseline" ROUTE = "/text" @router.post(ROUTE, tags=["Text Task"], description=DESCRIPTION) async def evaluate_text(request: TextEvaluationRequest): """ Evaluate text classification for climate disinformation detection. Current Model: Random Baseline - Makes random predictions from the label space (0-7) - Used as a baseline for comparison """ # Get space info username, space_url = get_space_info() # Define the label mapping LABEL_MAPPING = { "0_not_relevant": 0, "1_not_happening": 1, "2_not_human": 2, "3_not_bad": 3, "4_solutions_harmful_unnecessary": 4, "5_science_unreliable": 5, "6_proponents_biased": 6, "7_fossil_fuels_needed": 7 } # Load and prepare the dataset dataset = load_dataset(request.dataset_name) # Convert string labels to integers dataset = dataset.map(lambda x: {"label": LABEL_MAPPING[x["label"]]}) # Split dataset train_test = dataset["train"] test_dataset = dataset["test"] # Start tracking emissions tracker.start() tracker.start_task("inference") #-------------------------------------------------------------------------------------------- # YOUR MODEL INFERENCE CODE HERE # Update the code below to replace the random baseline by your model inference within the inference pass where the energy consumption and emissions are tracked. #-------------------------------------------------------------------------------------------- # Make random predictions (placeholder for actual model inference) #true_labels = test_dataset["label"] #predictions = [random.randint(0, 7) for _ in range(len(true_labels))] from transformers import DistilBertTokenizer import numpy as np import onnxruntime as ort from huggingface_hub import hf_hub_download # Load the ONNX model and tokenizer MODEL_REPO = "ClimateDebunk/Quantized_DistilBertForSequenceClassification" MODEL_FILENAME = "distilbert_quantized_dynamic.onnx" MODEL_PATH = hf_hub_download(repo_id=MODEL_REPO, filename=MODEL_FILENAME) tokenizer = DistilBertTokenizer.from_pretrained("distilbert-base-uncased") ort_session = ort.InferenceSession(MODEL_PATH, providers=["CPUExecutionProvider"]) # Preprocess the text data def preprocess(texts): return tokenizer( texts, padding=True, truncation=True, max_length=365, return_tensors="np" ) # Run inference def predict(texts): inputs = preprocess(texts) ort_inputs = { "input_ids": inputs["input_ids"].astype(np.int64), "attention_mask": inputs["attention_mask"].astype(np.int64) } ort_outputs = ort_session.run(None, ort_inputs) logits = ort_outputs[0] predictions = np.argmax(logits, axis=1) return predictions # Replace the random predictions with actual model predictions texts = test_dataset["text"] predictions = predict(texts) true_labels = test_dataset["label"] #-------------------------------------------------------------------------------------------- # YOUR MODEL INFERENCE STOPS HERE #-------------------------------------------------------------------------------------------- # Stop tracking emissions emissions_data = tracker.stop_task() # Calculate accuracy accuracy = accuracy_score(true_labels, predictions) # Prepare results dictionary results = { "username": username, "space_url": space_url, "submission_timestamp": datetime.now().isoformat(), "model_description": DESCRIPTION, "accuracy": float(accuracy), "energy_consumed_wh": emissions_data.energy_consumed * 1000, "emissions_gco2eq": emissions_data.emissions * 1000, "emissions_data": clean_emissions_data(emissions_data), "api_route": ROUTE, "dataset_config": { "dataset_name": request.dataset_name, "test_size": request.test_size, "test_seed": request.test_seed } } return results