Spaces:
Sleeping
Sleeping
from fastapi import APIRouter | |
from datetime import datetime | |
from datasets import load_dataset | |
from sklearn.metrics import accuracy_score | |
import random | |
from .utils.evaluation import TextEvaluationRequest | |
from .utils.emissions import tracker, clean_emissions_data, get_space_info | |
router = APIRouter() | |
DESCRIPTION = "Random Baseline" | |
ROUTE = "/text" | |
async def evaluate_text(request: TextEvaluationRequest): | |
""" | |
Evaluate text classification for climate disinformation detection. | |
Current Model: Random Baseline | |
- Makes random predictions from the label space (0-7) | |
- Used as a baseline for comparison | |
""" | |
# Get space info | |
username, space_url = get_space_info() | |
# Define the label mapping | |
LABEL_MAPPING = { | |
"0_not_relevant": 0, | |
"1_not_happening": 1, | |
"2_not_human": 2, | |
"3_not_bad": 3, | |
"4_solutions_harmful_unnecessary": 4, | |
"5_science_unreliable": 5, | |
"6_proponents_biased": 6, | |
"7_fossil_fuels_needed": 7 | |
} | |
# Load and prepare the dataset | |
dataset = load_dataset(request.dataset_name) | |
# Convert string labels to integers | |
dataset = dataset.map(lambda x: {"label": LABEL_MAPPING[x["label"]]}) | |
# Split dataset | |
train_test = dataset["train"] | |
test_dataset = dataset["test"] | |
# Start tracking emissions | |
tracker.start() | |
tracker.start_task("inference") | |
#-------------------------------------------------------------------------------------------- | |
# YOUR MODEL INFERENCE CODE HERE | |
# Update the code below to replace the random baseline by your model inference within the inference pass where the energy consumption and emissions are tracked. | |
#-------------------------------------------------------------------------------------------- | |
# Make random predictions (placeholder for actual model inference) | |
#true_labels = test_dataset["label"] | |
#predictions = [random.randint(0, 7) for _ in range(len(true_labels))] | |
from transformers import DistilBertTokenizer | |
import numpy as np | |
import onnxruntime as ort | |
# Load the ONNX model and tokenizer | |
MODEL_PATH = "/Users/hinabandukwala/Documents/frugalai/submission-template/models/distilbert_quantized_dynamic.onnx" | |
tokenizer = DistilBertTokenizer.from_pretrained("distilbert-base-uncased") | |
ort_session = ort.InferenceSession(MODEL_PATH, providers=["CPUExecutionProvider"]) | |
# Preprocess the text data | |
def preprocess(texts): | |
return tokenizer( | |
texts, | |
padding=True, | |
truncation=True, | |
max_length=365, | |
return_tensors="np" | |
) | |
# Run inference | |
def predict(texts): | |
inputs = preprocess(texts) | |
ort_inputs = { | |
"input_ids": inputs["input_ids"].astype(np.int64), | |
"attention_mask": inputs["attention_mask"].astype(np.int64) | |
} | |
ort_outputs = ort_session.run(None, ort_inputs) | |
logits = ort_outputs[0] | |
predictions = np.argmax(logits, axis=1) | |
return predictions | |
# Replace the random predictions with actual model predictions | |
texts = test_dataset["text"] | |
predictions = predict(texts) | |
true_labels = test_dataset["label"] | |
#-------------------------------------------------------------------------------------------- | |
# YOUR MODEL INFERENCE STOPS HERE | |
#-------------------------------------------------------------------------------------------- | |
# Stop tracking emissions | |
emissions_data = tracker.stop_task() | |
# Calculate accuracy | |
accuracy = accuracy_score(true_labels, predictions) | |
# Prepare results dictionary | |
results = { | |
"username": username, | |
"space_url": space_url, | |
"submission_timestamp": datetime.now().isoformat(), | |
"model_description": DESCRIPTION, | |
"accuracy": float(accuracy), | |
"energy_consumed_wh": emissions_data.energy_consumed * 1000, | |
"emissions_gco2eq": emissions_data.emissions * 1000, | |
"emissions_data": clean_emissions_data(emissions_data), | |
"api_route": ROUTE, | |
"dataset_config": { | |
"dataset_name": request.dataset_name, | |
"test_size": request.test_size, | |
"test_seed": request.test_seed | |
} | |
} | |
return results |