# predict.py import torch from transformers import AutoTokenizer, AutoModelForCausalLM from peft import PeftModel import argparse import os # ------------------------------- # Config # ------------------------------- #MODEL_NAME = "Qwen/Qwen3-0.6B-Base" MODEL_NAME = "/models/qwen" CHECKPOINT_DIR = "./qwen_loRA" DEVICE = torch.device("cuda" if torch.cuda.is_available() else "cpu") MAX_NEW_TOKENS = 256 # ------------------------------- # Load tokenizer and model # ------------------------------- print("šŸ”„ Loading tokenizer and model...") tokenizer = AutoTokenizer.from_pretrained(MODEL_NAME, trust_remote_code=True) tokenizer.pad_token = tokenizer.eos_token base_model = AutoModelForCausalLM.from_pretrained( MODEL_NAME, torch_dtype=torch.float16, device_map="auto", trust_remote_code=True ) model = PeftModel.from_pretrained(base_model, CHECKPOINT_DIR) model.eval() model = model.to(DEVICE) # ------------------------------- # Generate Summary # ------------------------------- def generate_summary(post: str) -> str: #prompt = f"Instruction: Summarize the post in one sentence.\n\nPost:\n{post}\n\nSummary:" # prompt = f"Please summarize the following Reddit post in 1–2 sentences:\n\n{post}\n\nSummary:" prompt = f"Instruction: Summarize the post in 1-2 sentences.\n\nPost:\n{post}\n\nSummary:" inputs = tokenizer(prompt, return_tensors="pt", padding=True).to(DEVICE) with torch.no_grad(): outputs = model.generate( **inputs, max_new_tokens=MAX_NEW_TOKENS, do_sample=False, # top_k=50, # top_p=0.95, temperature=1.0, pad_token_id=tokenizer.pad_token_id, use_cache=True ) full_output = tokenizer.decode(outputs[0], skip_special_tokens=True) summary = full_output.split("Summary:")[-1].strip() return summary # ------------------------------- # CLI # ------------------------------- if __name__ == "__main__": parser = argparse.ArgumentParser(description="Generate summary with trained Qwen PPO model") parser.add_argument("--post", type=str, required=True, help="Content of the post") args = parser.parse_args() print("šŸ“ Post:", args.post[:100] + ("..." if len(args.post) > 100 else "")) print("\nšŸ¤– Generating summary...\n") summary = generate_summary(args.post) print("āœ… Summary:\n", summary)