Spaces:
Running
on
CPU Upgrade
Running
on
CPU Upgrade
File size: 2,411 Bytes
7b2eca8 79a071f 7b2eca8 79a071f 7b2eca8 b48ecb9 7b2eca8 b48ecb9 7b2eca8 79a071f 7b2eca8 79a071f 7b2eca8 79a071f 7b2eca8 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 |
# predict.py
import torch
from transformers import AutoTokenizer, AutoModelForCausalLM
from peft import PeftModel
import argparse
import os
# -------------------------------
# Config
# -------------------------------
#MODEL_NAME = "Qwen/Qwen3-0.6B-Base"
MODEL_NAME = "/models/qwen"
CHECKPOINT_DIR = "./qwen_loRA"
DEVICE = torch.device("cuda" if torch.cuda.is_available() else "cpu")
MAX_NEW_TOKENS = 256
# -------------------------------
# Load tokenizer and model
# -------------------------------
print("π Loading tokenizer and model...")
tokenizer = AutoTokenizer.from_pretrained(MODEL_NAME, trust_remote_code=True)
tokenizer.pad_token = tokenizer.eos_token
base_model = AutoModelForCausalLM.from_pretrained(
MODEL_NAME,
torch_dtype=torch.float16,
device_map="auto",
trust_remote_code=True
)
model = PeftModel.from_pretrained(base_model, CHECKPOINT_DIR)
model.eval()
model = model.to(DEVICE)
# -------------------------------
# Generate Summary
# -------------------------------
def generate_summary(post: str) -> str:
#prompt = f"Instruction: Summarize the post in one sentence.\n\nPost:\n{post}\n\nSummary:"
# prompt = f"Please summarize the following Reddit post in 1β2 sentences:\n\n{post}\n\nSummary:"
prompt = f"Instruction: Summarize the post in 1-2 sentences.\n\nPost:\n{post}\n\nSummary:"
inputs = tokenizer(prompt, return_tensors="pt", padding=True).to(DEVICE)
with torch.no_grad():
outputs = model.generate(
**inputs,
max_new_tokens=MAX_NEW_TOKENS,
do_sample=False,
# top_k=50,
# top_p=0.95,
temperature=1.0,
pad_token_id=tokenizer.pad_token_id,
use_cache=True
)
full_output = tokenizer.decode(outputs[0], skip_special_tokens=True)
summary = full_output.split("Summary:")[-1].strip()
return summary
# -------------------------------
# CLI
# -------------------------------
if __name__ == "__main__":
parser = argparse.ArgumentParser(description="Generate summary with trained Qwen PPO model")
parser.add_argument("--post", type=str, required=True, help="Content of the post")
args = parser.parse_args()
print("π Post:", args.post[:100] + ("..." if len(args.post) > 100 else ""))
print("\nπ€ Generating summary...\n")
summary = generate_summary(args.post)
print("β
Summary:\n", summary) |