File size: 2,248 Bytes
7b2eca8
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
# predict.py

import torch
from transformers import AutoTokenizer, AutoModelForCausalLM
from peft import PeftModel
import argparse
import os

# -------------------------------
# Config
# -------------------------------
MODEL_NAME = "Qwen/Qwen3-0.6B-Base"
CHECKPOINT_DIR = "./artifacts/qwen_loRA"
DEVICE = torch.device("cuda" if torch.cuda.is_available() else "cpu")
MAX_NEW_TOKENS = 64

# -------------------------------
# Load tokenizer and model
# -------------------------------
print("πŸ”„ Loading tokenizer and model...")
tokenizer = AutoTokenizer.from_pretrained(MODEL_NAME)
tokenizer.pad_token = tokenizer.eos_token

base_model = AutoModelForCausalLM.from_pretrained(
    MODEL_NAME,
    torch_dtype=torch.float16,
    device_map="auto"
)

model = PeftModel.from_pretrained(base_model, CHECKPOINT_DIR)
model.eval()
model = model.to(DEVICE)

# -------------------------------
# Generate Summary
# -------------------------------
def generate_summary(title: str, post: str) -> str:
    prompt = f"Title: {title}\n\nPost: {post}\n\nSummary:"
    inputs = tokenizer(prompt, return_tensors="pt", padding=True).to(DEVICE)

    with torch.no_grad():
        outputs = model.generate(
            **inputs,
            max_new_tokens=MAX_NEW_TOKENS,
            do_sample=True,
            top_k=50,
            top_p=0.95,
            temperature=0.7,
            pad_token_id=tokenizer.pad_token_id,
            use_cache=True
        )

    full_output = tokenizer.decode(outputs[0], skip_special_tokens=True)
    summary = full_output.split("Summary:")[-1].strip()
    return summary

# -------------------------------
# CLI
# -------------------------------
if __name__ == "__main__":
    parser = argparse.ArgumentParser(description="Generate summary with trained Qwen PPO model")
    parser.add_argument("--title", type=str, required=True, help="Title of the post")
    parser.add_argument("--post", type=str, required=True, help="Content of the post")
    args = parser.parse_args()

    print("\nπŸ“˜ Title:", args.title)
    print("πŸ“ Post:", args.post[:100] + ("..." if len(args.post) > 100 else ""))
    print("\nπŸ€– Generating summary...\n")

    summary = generate_summary(args.title, args.post)
    print("βœ… Summary:\n", summary)