Spaces:
Runtime error
Runtime error
add app.py
Browse files
app.py
ADDED
|
@@ -0,0 +1,125 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
|
| 2 |
+
import torch, torchvision
|
| 3 |
+
from monai.networks.nets import UNet
|
| 4 |
+
from monai.networks.layers import Norm
|
| 5 |
+
from monai.inferers import sliding_window_inference
|
| 6 |
+
import PIL
|
| 7 |
+
from torchvision.utils import save_image
|
| 8 |
+
import numpy as np
|
| 9 |
+
|
| 10 |
+
model = UNet(
|
| 11 |
+
spatial_dims=3,
|
| 12 |
+
in_channels=1,
|
| 13 |
+
out_channels=2,
|
| 14 |
+
channels=(16, 32, 64, 128, 256),
|
| 15 |
+
strides=(2, 2, 2, 2),
|
| 16 |
+
num_res_units=2,
|
| 17 |
+
norm=Norm.BATCH,
|
| 18 |
+
)
|
| 19 |
+
|
| 20 |
+
model.load_state_dict(torch.load("weights/model.pt", map_location=torch.device('cpu')))
|
| 21 |
+
|
| 22 |
+
import gradio as gr
|
| 23 |
+
|
| 24 |
+
def load_image0():
|
| 25 |
+
return load_image(0)
|
| 26 |
+
|
| 27 |
+
def load_image1():
|
| 28 |
+
return load_image(1)
|
| 29 |
+
|
| 30 |
+
def load_image2():
|
| 31 |
+
return load_image(2)
|
| 32 |
+
|
| 33 |
+
def load_image3():
|
| 34 |
+
return load_image(3)
|
| 35 |
+
|
| 36 |
+
def load_image4():
|
| 37 |
+
return load_image(4)
|
| 38 |
+
|
| 39 |
+
def load_image5():
|
| 40 |
+
return load_image(5)
|
| 41 |
+
|
| 42 |
+
def load_image6():
|
| 43 |
+
return load_image(6)
|
| 44 |
+
|
| 45 |
+
def load_image7():
|
| 46 |
+
return load_image(7)
|
| 47 |
+
|
| 48 |
+
def load_image8():
|
| 49 |
+
return load_image(8)
|
| 50 |
+
|
| 51 |
+
def load_image(index):
|
| 52 |
+
return [index, f"thumbnails/val_image{index}.png", f"thumbnails_label/val_label{index}.png"]
|
| 53 |
+
|
| 54 |
+
def predict(index):
|
| 55 |
+
val_data = torch.load(f"samples/val_data{index}.pt")
|
| 56 |
+
|
| 57 |
+
model.eval()
|
| 58 |
+
with torch.no_grad():
|
| 59 |
+
roi_size = (160, 160, 160)
|
| 60 |
+
sw_batch_size = 4
|
| 61 |
+
val_outputs = sliding_window_inference(val_data, roi_size, sw_batch_size, model)
|
| 62 |
+
|
| 63 |
+
meta_tsr = torch.argmax(val_outputs, dim=1)[0, :, :, 80]
|
| 64 |
+
pil_image = torchvision.transforms.functional.to_pil_image(meta_tsr.to(torch.float32))
|
| 65 |
+
|
| 66 |
+
return pil_image
|
| 67 |
+
|
| 68 |
+
|
| 69 |
+
with gr.Blocks(title="Spleen 3D segmentation with MONAI - ClassCat",
|
| 70 |
+
css=".gradio-container {background:azure;}"
|
| 71 |
+
) as demo:
|
| 72 |
+
sample_index = gr.State([])
|
| 73 |
+
|
| 74 |
+
gr.HTML("""<div style="font-family:'Times New Roman', 'Serif'; font-size:16pt; font-weight:bold; text-align:center; color:royalblue;">Spleen 3D segmentation with MONAI</div>""")
|
| 75 |
+
|
| 76 |
+
gr.HTML("""<h4 style="color:navy;">1. Select an example, which includes input images and label images, by clicking "Example x" button.</h4>""")
|
| 77 |
+
|
| 78 |
+
with gr.Row():
|
| 79 |
+
input_image = gr.Image(label="a piece of input image data", type="filepath")
|
| 80 |
+
label_image = gr.Image(label="label image", type="filepath")
|
| 81 |
+
output_image = gr.Image(label="predicted image", type="pil")
|
| 82 |
+
|
| 83 |
+
|
| 84 |
+
with gr.Row():
|
| 85 |
+
with gr.Column():
|
| 86 |
+
ex_btn0 = gr.Button("Example 1")
|
| 87 |
+
ex_btn0.style(full_width=False, css="width:20px;")
|
| 88 |
+
ex_image0 = gr.Image(value='thumbnails/val_image0.png', interactive=False, label='ex 1')
|
| 89 |
+
ex_image0.style(width=128, height=128)
|
| 90 |
+
|
| 91 |
+
with gr.Column():
|
| 92 |
+
ex_btn1 = gr.Button("Example 2")
|
| 93 |
+
ex_btn1.style(full_width=False, css="width:20px;")
|
| 94 |
+
ex_image1 = gr.Image(value='thumbnails/val_image1.png', interactive=False, label='ex 2')
|
| 95 |
+
ex_image1.style(width=128, height=128)
|
| 96 |
+
|
| 97 |
+
with gr.Column():
|
| 98 |
+
ex_btn2 = gr.Button("Example 3")
|
| 99 |
+
ex_btn2.style(full_width=False, css="width:20px;")
|
| 100 |
+
ex_image2 = gr.Image(value='thumbnails/val_image2.png', interactive=False, label='ex 3')
|
| 101 |
+
ex_image2.style(width=128, height=128)
|
| 102 |
+
|
| 103 |
+
with gr.Column():
|
| 104 |
+
ex_btn3 = gr.Button("Example 4")
|
| 105 |
+
ex_btn3.style(full_width=False, css="width:20px;")
|
| 106 |
+
ex_image3 = gr.Image(value='thumbnails/val_image3.png', interactive=False, label='ex 4')
|
| 107 |
+
ex_image3.style(width=128, height=128)
|
| 108 |
+
|
| 109 |
+
ex_btn0.click(fn=load_image0, outputs=[sample_index, input_image, label_image])
|
| 110 |
+
ex_btn1.click(fn=load_image1, outputs=[sample_index, input_image, label_image])
|
| 111 |
+
ex_btn2.click(fn=load_image2, outputs=[sample_index, input_image, label_image])
|
| 112 |
+
ex_btn3.click(fn=load_image3, outputs=[sample_index, input_image, label_image])
|
| 113 |
+
|
| 114 |
+
gr.HTML("""<br/>""")
|
| 115 |
+
gr.HTML("""<h4 style="color:navy;">2. Then, click "Infer" button to predict segmentation images. It will take about 30 seconds (on cpu)</h4>""")
|
| 116 |
+
|
| 117 |
+
send_btn = gr.Button("Infer")
|
| 118 |
+
send_btn.click(fn=predict, inputs=[sample_index], outputs=[output_image])
|
| 119 |
+
|
| 120 |
+
|
| 121 |
+
#demo.queue()
|
| 122 |
+
demo.launch(debug=True)
|
| 123 |
+
|
| 124 |
+
|
| 125 |
+
### EOF ###
|