Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -1,33 +1,149 @@
|
|
1 |
import tempfile
|
2 |
import gradio as gr
|
3 |
import janus_swi as janus
|
|
|
|
|
|
|
|
|
|
|
4 |
import nest_asyncio
|
5 |
|
6 |
nest_asyncio.apply()
|
7 |
|
8 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
9 |
janus.consult("knowledge_base.pl")
|
10 |
-
|
11 |
-
|
12 |
-
|
13 |
-
|
14 |
-
|
15 |
-
|
16 |
-
|
17 |
-
|
18 |
-
|
19 |
-
#
|
20 |
janus.consult("tmp.pl")
|
21 |
-
|
22 |
-
|
|
|
|
|
|
|
23 |
else:
|
24 |
-
|
25 |
-
|
26 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
27 |
|
28 |
gr.ChatInterface(
|
29 |
yes_man,
|
30 |
-
title="
|
31 |
-
description="Ask
|
32 |
-
examples=["
|
33 |
-
).launch()
|
|
|
1 |
import tempfile
|
2 |
import gradio as gr
|
3 |
import janus_swi as janus
|
4 |
+
from crewai import Agent, Task, Crew
|
5 |
+
from crewai_tools import tool
|
6 |
+
from crewai_tools import MDXSearchTool
|
7 |
+
from crewai_tools import WebsiteSearchTool
|
8 |
+
from langchain_anthropic import ChatAnthropic
|
9 |
import nest_asyncio
|
10 |
|
11 |
nest_asyncio.apply()
|
12 |
|
13 |
+
MODEL_NAME = "claude-3-5-sonnet-20240620"
|
14 |
+
llm = ChatAnthropic(model=MODEL_NAME,
|
15 |
+
temperature=0.2,
|
16 |
+
max_tokens=4096,)
|
17 |
+
|
18 |
+
webs_tool = WebsiteSearchTool(
|
19 |
+
website=DOC_URL,
|
20 |
+
config=dict(
|
21 |
+
llm=dict(
|
22 |
+
provider="anthropic",
|
23 |
+
config=dict(
|
24 |
+
model=MODEL_NAME,
|
25 |
+
temperature=0.2,
|
26 |
+
# top_p=1,
|
27 |
+
# stream=true,
|
28 |
+
),
|
29 |
+
),
|
30 |
+
embedder=dict(
|
31 |
+
provider="ollama",
|
32 |
+
config=dict(
|
33 |
+
model="mxbai-embed-large",
|
34 |
+
# task_type="retrieval_document",
|
35 |
+
# title="Embeddings",
|
36 |
+
),
|
37 |
+
),
|
38 |
+
)
|
39 |
+
)
|
40 |
+
docs_tool = MDXSearchTool(
|
41 |
+
mdx='agent_doc.md',
|
42 |
+
config=dict(
|
43 |
+
llm=dict(
|
44 |
+
provider="anthropic",
|
45 |
+
config=dict(
|
46 |
+
model=MODEL_NAME,
|
47 |
+
temperature=0.2,
|
48 |
+
# top_p=1,
|
49 |
+
# stream=true,
|
50 |
+
),
|
51 |
+
),
|
52 |
+
embedder=dict(
|
53 |
+
provider="ollama",
|
54 |
+
config=dict(
|
55 |
+
model="mxbai-embed-large",
|
56 |
+
# task_type="retrieval_document",
|
57 |
+
# title="Embeddings",
|
58 |
+
),
|
59 |
+
),
|
60 |
+
)
|
61 |
+
)
|
62 |
+
|
63 |
+
@tool("Prolog Query Engine")
|
64 |
+
def prolog_query_engine(code: str, query: str) -> str:
|
65 |
+
"""Executes a Prolog query with additional Prolog code defining predicates and facts, and returns the results.
|
66 |
+
|
67 |
+
Args:
|
68 |
+
code: Prolog code defining predicates and facts. This code will be appended to knowledge base before executing the query.
|
69 |
+
query: The Prolog query to execute.
|
70 |
+
|
71 |
+
Returns:
|
72 |
+
A string containing the results of the query, with each result on a new line. If the query fails, returns "False".
|
73 |
+
"""
|
74 |
janus.consult("knowledge_base.pl")
|
75 |
+
|
76 |
+
# Remove code block markers if present
|
77 |
+
if '```' in code:
|
78 |
+
code = code.split('```')[1].split('```')[0]
|
79 |
+
|
80 |
+
# Write the provided Prolog code to a temporary file
|
81 |
+
with open('tmp.pl', 'w') as f:
|
82 |
+
f.write(code)
|
83 |
+
|
84 |
+
# Consult the temporary file to load the provided Prolog code
|
85 |
janus.consult("tmp.pl")
|
86 |
+
|
87 |
+
# Execute the query and return the results
|
88 |
+
results = janus.query(query)
|
89 |
+
if results:
|
90 |
+
return '\n'.join([str(r) for r in results])
|
91 |
else:
|
92 |
+
return "False"
|
93 |
+
|
94 |
+
# Define your agents with roles, goals, and tools
|
95 |
+
programmer = Agent(
|
96 |
+
role='Software Engineer',
|
97 |
+
goal='Write Prolog code and a line of Prolog queries to answer user queries',
|
98 |
+
backstory='''A software engineer with expertise in logic programming and experience using Prolog.
|
99 |
+
Can translate user requests into Prolog code and execute queries to provide accurate results.
|
100 |
+
Familiar with various Prolog concepts like recursion, backtracking, and unification.''',
|
101 |
+
tools=[prolog_query_engine, docs_tool],
|
102 |
+
llm=llm
|
103 |
+
)
|
104 |
+
consultant = Agent(
|
105 |
+
role='Consultant',
|
106 |
+
goal='Answer user query and explain in simple English that even 8 year old kid can understand',
|
107 |
+
backstory='''A friendly and patient consultant, skilled at explaining complex topics in a clear and simple way.
|
108 |
+
Can understand the output of a software engineer and translate it into easy-to-understand explanations,
|
109 |
+
even for someone as young as eight years old. Use simple words and examples to make learning fun and engaging.''',
|
110 |
+
tools=[webs_tool],
|
111 |
+
llm=llm
|
112 |
+
)
|
113 |
+
|
114 |
+
# Define a task
|
115 |
+
task1 = Task(
|
116 |
+
name='Answer user query',
|
117 |
+
description='Given a user query, write Prolog defining predicates and facts in query and build a Prolog query to access knowledge base and answer user query.\nUser query: {query}',
|
118 |
+
agent=programmer,
|
119 |
+
expected_output='''A report including:\n\
|
120 |
+
- User query\n\
|
121 |
+
- Prolog code with predicates and facts\n\
|
122 |
+
- Prolog query used to answer the user query\n\
|
123 |
+
- Result of running the Prolog query\n\
|
124 |
+
- A basic explanation of the result, clarifying how the Prolog query produced the answer'''
|
125 |
+
)
|
126 |
+
# Define a task
|
127 |
+
task2 = Task(
|
128 |
+
name='Reply user query',
|
129 |
+
description='Given answer to user query, improve the wordings in answer using your knowledge.',
|
130 |
+
agent=consultant,
|
131 |
+
expected_output='A clear, concise, and easy-to-understand explanation of the answer to the user query, suitable for an 8-year-old.'
|
132 |
+
)
|
133 |
+
|
134 |
+
# Create a crew
|
135 |
+
crew = Crew(
|
136 |
+
agents=[programmer, consultant],
|
137 |
+
tasks=[task1, task2],
|
138 |
+
verbose=True)
|
139 |
+
|
140 |
+
|
141 |
+
def yes_man(user_query, history):
|
142 |
+
return crew.kickoff(inputs={"query": user_query})
|
143 |
|
144 |
gr.ChatInterface(
|
145 |
yes_man,
|
146 |
+
title="SSI/SSDI expert",
|
147 |
+
description="Ask expert system any question",
|
148 |
+
examples=["Is it eligible for a blind US citizen born in 1996 Jan 2 name John Doe to get SSI?"],
|
149 |
+
).queue().launch()
|