File size: 4,603 Bytes
9705209
df20613
beb3e34
b73b4e1
 
df20613
8cc7c1a
26b8b00
31b5ef1
66b9c9d
540d02b
 
 
 
 
66b9c9d
540d02b
 
31b5ef1
540d02b
83f2c3c
66b9c9d
 
 
 
 
540d02b
66b9c9d
26b8b00
b365ec9
b355815
26b8b00
66b9c9d
83f2c3c
 
faf8b4b
4f45f95
26b8b00
775fea9
 
42bc3b0
3d79c89
ba82fe8
3d79c89
fdef182
b355815
66b9c9d
584248d
83f2c3c
4f0f93d
83f2c3c
584248d
 
 
 
 
83f2c3c
 
8015cdb
f1ecf3e
faf8b4b
4549b91
cc301d6
1ac8545
 
 
6000267
668b9d2
065bb16
 
 
 
 
 
 
66b9c9d
065bb16
 
 
 
 
 
 
 
 
 
f1ecf3e
83f2c3c
 
f1ecf3e
 
 
faf8b4b
f1ecf3e
 
8015cdb
f1ecf3e
 
8cc7c1a
df5841e
 
33632ae
df5841e
e86e66f
 
de70cb6
 
df5841e
beb3e34
854f030
dd657c6
 
524c7bd
b9e34c7
 
 
9540bec
4125b50
9540bec
dd657c6
524c7bd
d6a1b2e
391663d
12ae958
3d79c89
86efe2e
12ae958
854f030
12ae958
854f030
12ae958
 
faf8b4b
12ae958
 
aca188e
12ae958
aca188e
12ae958
9303628
df5841e
faf8b4b
 
12ae958
 
df5841e
e2813d1
 
5ff37df
561ccb3
 
 
 
 
 
 
1b3d3da
12ae958
e5bac18
 
 
12ae958
 
d4c5cf6
ddac224
9acca80
d4c5cf6
524c7bd
 
 
 
 
 
 
 
9acca80
d4c5cf6
065bb16
12ae958
dd657c6
 
12ae958
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
from datasets.arrow_dataset import InMemoryTable
import streamlit as st
from PIL import Image, ImageDraw

from streamlit_image_coordinates import streamlit_image_coordinates

import numpy as np


from datasets import load_dataset





ds = load_dataset("Circularmachines/batch_indexing_machine_test", split="test")





patch_size=32
stride=16
#image_size=2304
image_size=512
gridsize=31

n_patches=961

#pred=np.load('pred.npy')
pred_all=np.load('pred_all_hue.npy').reshape(-1,64)

random_i=np.load('random.npy')


if "point" not in st.session_state:
  st.session_state["point"] = (128,64)

if "img" not in st.session_state:
  st.session_state["img"] = 0

if "draw" not in st.session_state:
  st.session_state["draw"] = True

def patch(ij):
  #st.write(ij)
  immg=ij//n_patches
 

  imm=ds[int(immg)]['image'].resize(size=(512,512))

  p=ij%n_patches
  y=p//gridsize
  x=p%gridsize
  imc=imm.crop(((x-1)*stride,(y-1)*stride,(x+3)*stride,(y+3)*stride))

  return imc

def find():
  st.session_state["sideix"] = []
  point=st.session_state["point"]
  point=(point[0]//stride,point[1]//stride)
  #point=point[0]*36+point[1]
  #st.write(point)
  #st.write(pred_all[st.session_state["img"],point[0]*36+point[1]])
  i=st.session_state["img"]
  p=point[1]*gridsize+point[0]
  diff=np.linalg.norm(pred_all[np.newaxis,i*n_patches+p,:]-pred_all,axis=-1)
  #re_pred=pred_all.reshape(20,20,256,64)
  #diff_re=diff.reshape((20,20,256)).argmin(axis=[])
  i=0
  ix=0
  batches=[]
  while ix<4:

    batch=diff.argsort()[i]//n_patches//20

    if batch not in batches:

      batches.append(batch)

      st.session_state["sideimg"][ix]=patch(diff.argsort()[i])
      ix+=1
    
    i+=1
  
  st.session_state["sideix"]=batches


def button_click():
    st.session_state["img"]=np.random.randint(100)
    st.session_state["draw"] = False

if "sideimg" not in st.session_state:
  st.session_state["sideimg"] = [patch(i) for i in range(4)]

if "sideix" not in st.session_state:
  find()

def get_ellipse_coords(point):# tuple[int, int]) -> tuple[int, int, int, int]):
    center = point
    #patch_size
    return (
        center[0] ,
        center[1] ,
        center[0] + patch_size,
        center[1] + patch_size,
    )


"The batch indexing machine shakes parts while recording a video."
"The machine processed 20 batches of random parts, with each batch running for 30 seconds."

#"HOW TO DUMPSTER DIVE DIGITALLY:"
#"Click in the image to set a target"
#"Click “Find similar parts” to find the best matches in other batches"

"The model is trained completely unsupervised using a CNN with a custom contrastive loss. Open source code to be released soon. "



col1, col2 = st.columns([5,1])

with col1:

  current_image=ds[st.session_state["img"]]['image'].resize(size=(512,512))
  draw = ImageDraw.Draw(current_image)

  if st.session_state["draw"]:

  # Draw an ellipse at each coordinate in points
    #for point in st.session_state["points"]:
    point=st.session_state["point"]
    coords = get_ellipse_coords(point)
    draw.rectangle(coords, outline="green",width=2)

  value = streamlit_image_coordinates(current_image, key="pil")

  if value is not None:
      point = (value["x"]-8)//stride*stride, (value["y"]-8)//stride*stride

      if point != st.session_state["point"]:
          st.session_state["point"]=point
          st.session_state["draw"]=True
          st.experimental_rerun()

  #subcol1, subcol2 = st.columns(2)
  #with subcol1:
  #st.button('Previous Frame', on_click=button_click)
  scol1, scol2 = st.columns(2)
  with scol1:
    st.button('Change Image', on_click=button_click)

  with scol2: 
    st.button('Find similar parts', on_click=find)

  st.write("Currently viewing frame "+str(random_i[st.session_state["img"]%20])+" in batch "+str(st.session_state["img"]//20))

  #st.write(st.session_state["img"])
  #st.write(st.session_state["point"])
  #st.write(st.session_state["draw"])

with col2:
 # st.write("current selection:")
  for i in range(4):
    
    if i==0:
      st.write("current selection in batch "+str(st.session_state["sideix"][i]))#//(gridsize**2)//20))
    if i==1:
      st.write("Best match found in batch "+str(st.session_state["sideix"][i]))#//(gridsize**2)//20))
    if i==2:
      st.write("Second best match found in batch "+str(st.session_state["sideix"][i]))#//(gridsize**2)//20))
    if i==3:
      st.write("Third best match found in batch "+str(st.session_state["sideix"][i]))#//(gridsize**2)//20))

    st.image(st.session_state["sideimg"][i].resize((128,128)))
    
    #st.write(st.session_state["sideix"][i])

"[email protected]"