Spaces:
Running
Running
Commit
·
47fbf7b
1
Parent(s):
e10970a
Quick fix app
Browse files- app.py +9 -38
- requirements.txt +1 -2
app.py
CHANGED
|
@@ -1,10 +1,6 @@
|
|
| 1 |
import streamlit as st
|
| 2 |
-
from streamlit_lottie import st_lottie_spinner
|
| 3 |
-
import json
|
| 4 |
-
import time
|
| 5 |
-
import requests
|
| 6 |
-
|
| 7 |
import pandas as pd
|
|
|
|
| 8 |
from datetime import datetime
|
| 9 |
|
| 10 |
import numpy as np
|
|
@@ -23,16 +19,6 @@ st.set_page_config(
|
|
| 23 |
initial_sidebar_state="expanded",
|
| 24 |
)
|
| 25 |
|
| 26 |
-
@st.cache_data
|
| 27 |
-
def load_lottieurl(url: str):
|
| 28 |
-
r = requests.get(url)
|
| 29 |
-
if r.status_code != 200:
|
| 30 |
-
return None
|
| 31 |
-
return r.json()
|
| 32 |
-
|
| 33 |
-
lottie_progress_url = "https://lottie.host/12c7a018-d6c9-4595-abab-2992e4117d95/TnBbTO5WR5.json"
|
| 34 |
-
lottie_progress = load_lottieurl(lottie_progress_url)
|
| 35 |
-
|
| 36 |
# Preprocessing
|
| 37 |
@st.cache_data
|
| 38 |
def merge(B, C, A):
|
|
@@ -148,20 +134,6 @@ def train_test(dataframe):
|
|
| 148 |
future_X = dataframe.iloc[0:,1:]
|
| 149 |
return (training_y, test_y, test_y_series, training_X, test_X, future_X)
|
| 150 |
|
| 151 |
-
# @st.cache_data
|
| 152 |
-
# def model_fitting(dataframe, Exo):
|
| 153 |
-
# futureModel = pm.auto_arima(dataframe['Sales'], X=Exo, start_p=1, start_q=1,
|
| 154 |
-
# test='adf',min_p=1,min_q=1,
|
| 155 |
-
# max_p=3, max_q=3, m=12,
|
| 156 |
-
# start_P=0, seasonal=True,
|
| 157 |
-
# d=None, D=1, trace=True,
|
| 158 |
-
# error_action='ignore',
|
| 159 |
-
# suppress_warnings=True,
|
| 160 |
-
# stepwise=True,
|
| 161 |
-
# maxiter=5)
|
| 162 |
-
# model = futureModel
|
| 163 |
-
# return model
|
| 164 |
-
|
| 165 |
@st.cache_data
|
| 166 |
def test_fitting(dataframe, Exo, trainY):
|
| 167 |
trainTestModel = auto_arima(X = Exo, y = trainY, start_p=1, start_q=1,
|
|
@@ -171,8 +143,7 @@ def test_fitting(dataframe, Exo, trainY):
|
|
| 171 |
d=None, D=1, trace=True,
|
| 172 |
error_action='ignore',
|
| 173 |
suppress_warnings=True,
|
| 174 |
-
stepwise=True
|
| 175 |
-
maxiter=5)
|
| 176 |
model = trainTestModel
|
| 177 |
return model
|
| 178 |
|
|
@@ -276,12 +247,10 @@ with st.sidebar:
|
|
| 276 |
st.write("Your uploaded data:")
|
| 277 |
st.write(df)
|
| 278 |
|
| 279 |
-
|
| 280 |
-
|
| 281 |
-
|
| 282 |
-
|
| 283 |
-
merge_sort(df)
|
| 284 |
-
series = group_to_three(df)
|
| 285 |
|
| 286 |
st.session_state.uploaded = True
|
| 287 |
|
|
@@ -323,7 +292,9 @@ if (st.session_state.uploaded):
|
|
| 323 |
col1, col2 = st.columns(2)
|
| 324 |
with col1:
|
| 325 |
col1.header("Sales Forecast")
|
| 326 |
-
|
|
|
|
|
|
|
| 327 |
# plt.figure(figsize=(18,10))
|
| 328 |
# plt.plot(df['Sales'], color='b', label = 'Actual Sales')
|
| 329 |
# plt.plot(test_y, color='b')
|
|
|
|
| 1 |
import streamlit as st
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 2 |
import pandas as pd
|
| 3 |
+
import time
|
| 4 |
from datetime import datetime
|
| 5 |
|
| 6 |
import numpy as np
|
|
|
|
| 19 |
initial_sidebar_state="expanded",
|
| 20 |
)
|
| 21 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 22 |
# Preprocessing
|
| 23 |
@st.cache_data
|
| 24 |
def merge(B, C, A):
|
|
|
|
| 134 |
future_X = dataframe.iloc[0:,1:]
|
| 135 |
return (training_y, test_y, test_y_series, training_X, test_X, future_X)
|
| 136 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 137 |
@st.cache_data
|
| 138 |
def test_fitting(dataframe, Exo, trainY):
|
| 139 |
trainTestModel = auto_arima(X = Exo, y = trainY, start_p=1, start_q=1,
|
|
|
|
| 143 |
d=None, D=1, trace=True,
|
| 144 |
error_action='ignore',
|
| 145 |
suppress_warnings=True,
|
| 146 |
+
stepwise=True)
|
|
|
|
| 147 |
model = trainTestModel
|
| 148 |
return model
|
| 149 |
|
|
|
|
| 247 |
st.write("Your uploaded data:")
|
| 248 |
st.write(df)
|
| 249 |
|
| 250 |
+
df = drop(df)
|
| 251 |
+
df = date_format(df)
|
| 252 |
+
merge_sort(df)
|
| 253 |
+
series = group_to_three(df)
|
|
|
|
|
|
|
| 254 |
|
| 255 |
st.session_state.uploaded = True
|
| 256 |
|
|
|
|
| 292 |
col1, col2 = st.columns(2)
|
| 293 |
with col1:
|
| 294 |
col1.header("Sales Forecast")
|
| 295 |
+
chart_data = pd.DataFrame(np.random.randn(20, 3), columns=["Forecasted", "Predicted", "Actual Sale"])
|
| 296 |
+
col1.line_chart(chart_data)
|
| 297 |
+
# col1.line_chart(df['Sales'], x="Date", y="Actual Sales", color="#0000EE")
|
| 298 |
# plt.figure(figsize=(18,10))
|
| 299 |
# plt.plot(df['Sales'], color='b', label = 'Actual Sales')
|
| 300 |
# plt.plot(test_y, color='b')
|
requirements.txt
CHANGED
|
@@ -2,5 +2,4 @@ pmdarima
|
|
| 2 |
statsmodels
|
| 3 |
transformers
|
| 4 |
torch
|
| 5 |
-
streamlit
|
| 6 |
-
streamlit-lottie
|
|
|
|
| 2 |
statsmodels
|
| 3 |
transformers
|
| 4 |
torch
|
| 5 |
+
streamlit
|
|
|