Spaces:
Running
Running
File size: 15,270 Bytes
a7fd2fe 39440ed e2cb6ae d7ac35b e2cb6ae e40f126 e2cb6ae 0921718 e2cb6ae c49aa0f e2cb6ae c49aa0f e2cb6ae c49aa0f e2cb6ae c49aa0f e2cb6ae c49aa0f e2cb6ae 3e41dea e2cb6ae c49aa0f d7ac35b e2cb6ae c49aa0f e2cb6ae ab69cc2 e2cb6ae c49aa0f e2cb6ae ab69cc2 e2cb6ae c49aa0f e2cb6ae c49aa0f e2cb6ae 4de408f e2cb6ae 4de408f e2cb6ae db843a0 c49aa0f bae9232 923595a e2cb6ae bae9232 e2cb6ae a7fd2fe 1898dec e40f126 d7ac35b 39440ed be97a09 e2cb6ae 4de408f 39440ed e2cb6ae 39440ed e2cb6ae 39440ed e2cb6ae 4de408f d7ac35b 1898dec e2cb6ae 1898dec be25e64 f4fa142 1898dec f4fa142 1898dec 4bcb041 1898dec d7ac35b 1898dec d7ac35b e40f126 d7ac35b 1898dec d7ac35b 1898dec d7ac35b e40f126 5c50e05 1898dec 5c50e05 1898dec 5c50e05 e40f126 be97a09 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 |
import streamlit as st
import pandas as pd
from datetime import datetime
import numpy as np
import pmdarima as pm
import matplotlib.pyplot as plt
from pmdarima import auto_arima
import plotly.graph_objects as go
import torch
from transformers import pipeline, TapasTokenizer, TapasForQuestionAnswering
st.set_page_config(
page_title="Sales Forecasting System",
page_icon="π",
layout="wide",
initial_sidebar_state="expanded",
)
# Preprocessing
@st.cache_data
def merge(B, C, A):
i = j = k = 0
# Convert 'Date' columns to datetime.date objects
B['Date'] = pd.to_datetime(B['Date']).dt.date
C['Date'] = pd.to_datetime(C['Date']).dt.date
A['Date'] = pd.to_datetime(A['Date']).dt.date
while i < len(B) and j < len(C):
if B['Date'].iloc[i] <= C['Date'].iloc[j]:
A['Date'].iloc[k] = B['Date'].iloc[i]
A['Sales'].iloc[k] = B['Sales'].iloc[i]
i += 1
else:
A['Date'].iloc[k] = C['Date'].iloc[j]
A['Sales'].iloc[k] = C['Sales'].iloc[j]
j += 1
k += 1
while i < len(B):
A['Date'].iloc[k] = B['Date'].iloc[i]
A['Sales'].iloc[k] = B['Sales'].iloc[i]
i += 1
k += 1
while j < len(C):
A['Date'].iloc[k] = C['Date'].iloc[j]
A['Sales'].iloc[k] = C['Sales'].iloc[j]
j += 1
k += 1
return A
@st.cache_data
def merge_sort(dataframe):
if len(dataframe) > 1:
center = len(dataframe) // 2
left = dataframe.iloc[:center]
right = dataframe.iloc[center:]
merge_sort(left)
merge_sort(right)
return merge(left, right, dataframe)
else:
return dataframe
@st.cache_data
def drop (dataframe):
def get_columns_containing(dataframe, substrings):
return [col for col in dataframe.columns if any(substring.lower() in col.lower() for substring in substrings)]
columns_to_keep = get_columns_containing(dataframe, ["date", "sale"])
dataframe = dataframe.drop(columns=dataframe.columns.difference(columns_to_keep))
dataframe = dataframe.dropna()
return dataframe
@st.cache_data
def date_format(dataframe):
for i, d, s in dataframe.itertuples():
dataframe['Date'][i] = dataframe['Date'][i].strip()
for i, d, s in dataframe.itertuples():
new_date = datetime.strptime(dataframe['Date'][i], "%m/%d/%Y").date()
dataframe['Date'][i] = new_date
return dataframe
@st.cache_data
def group_to_three(dataframe):
dataframe['Date'] = pd.to_datetime(dataframe['Date'])
dataframe = dataframe.groupby([pd.Grouper(key='Date', freq='3D')])['Sales'].mean().round(2)
dataframe = dataframe.replace(0, np.nan).dropna()
return dataframe
# SARIMAX Model
@st.cache_data
def train_test(dataframe):
n = round(len(dataframe) * 0.2)
training_y = dataframe.iloc[:-n,0]
test_y = dataframe.iloc[-n:,0]
test_y_series = pd.Series(test_y, index=dataframe.iloc[-n:, 0].index)
training_X = dataframe.iloc[:-n,1:]
test_X = dataframe.iloc[-n:,1:]
future_X = dataframe.iloc[0:,1:]
return (training_y, test_y, test_y_series, training_X, test_X, future_X)
@st.cache_data
def model_fitting(dataframe, Exo):
futureModel = pm.auto_arima(dataframe['Sales'], X=Exo, start_p=1, start_q=1,
test='adf',min_p=1,min_q=1,
max_p=3, max_q=3, m=12,
start_P=0, seasonal=True,
d=None, D=1, trace=True,
error_action='ignore',
suppress_warnings=True,
stepwise=True,
maxiter=7)
model = futureModel
return model
@st.cache_data
def test_fitting(dataframe, Exo, trainY):
trainTestModel = auto_arima(X = Exo, y = trainY, start_p=1, start_q=1,
test='adf',min_p=1,min_q=1,
max_p=3, max_q=3, m=12,
start_P=0, seasonal=True,
d=None, D=1, trace=True,
error_action='ignore',
suppress_warnings=True,
stepwise=True,
maxiter=7)
model = trainTestModel
return model
@st.cache_data
def forecast_accuracy(forecast, actual):
mape = np.mean(np.abs(forecast - actual)/np.abs(actual)).round(4) # MAPE
rmse = (np.mean((forecast - actual)**2)**.5).round(2) # RMSE
corr = np.corrcoef(forecast, actual)[0,1] # corr
mins = np.amin(np.hstack([forecast[:,None],
actual[:,None]]), axis=1)
maxs = np.amax(np.hstack([forecast[:,None],
actual[:,None]]), axis=1)
minmax = 1 - np.mean(mins/maxs) # minmax
return({'mape':mape, 'rmse':rmse, 'corr':corr, 'min-max':minmax})
@st.cache_data
def sales_growth(dataframe, fittedValues):
sales_growth = fittedValues.to_frame()
sales_growth = sales_growth.reset_index()
sales_growth.columns = ("Date", "Sales")
sales_growth = sales_growth.set_index('Date')
sales_growth['Sales'] = (sales_growth['Sales']).round(2)
# Calculate and create the column for sales difference and growth
sales_growth['Forecasted Sales First Difference']=(sales_growth['Sales']-sales_growth['Sales'].shift(1)).round(2)
sales_growth['Forecasted Sales Growth']=(((sales_growth['Sales']-sales_growth['Sales'].shift(1))/sales_growth['Sales'].shift(1))*100).round(2)
# Calculate and create the first row for sales difference and growth
sales_growth['Forecasted Sales First Difference'].iloc[0] = (dataframe['Sales'].iloc[-1]-dataframe['Sales'].iloc[-2]).round(2)
sales_growth['Forecasted Sales Growth'].iloc[0]=(((dataframe['Sales'].iloc[-1]-dataframe['Sales'].iloc[-2])/dataframe['Sales'].iloc[-1])*100).round(2)
return sales_growth
# TAPAS Model
@st.cache_resource
def load_tapas_model():
model_name = "google/tapas-large-finetuned-wtq"
tokenizer = TapasTokenizer.from_pretrained(model_name)
model = TapasForQuestionAnswering.from_pretrained(model_name, local_files_only=False)
pipe = pipeline("table-question-answering", model=model, tokenizer=tokenizer)
return pipe
pipe = load_tapas_model()
def get_answer(table, query):
answers = pipe(table=table, query=query)
return answers
def convert_answer(answer):
if answer['aggregator'] == 'SUM':
cells = answer['cells']
converted = sum(float(value.replace(',', '')) for value in cells)
return converted
if answer['aggregator'] == 'AVERAGE':
cells = answer['cells']
values = [float(value.replace(',', '')) for value in cells]
converted = sum(values) / len(values)
return converted
if answer['aggregator'] == 'COUNT':
cells = answer['cells']
converted = sum(int(value.replace(',', '')) for value in cells)
return converted
else:
return answer
def get_converted_answer(table, query):
converted_answer = convert_answer(get_answer(table, query))
return converted_answer
# Web Application
st.title("π SalesCast Forecasting Dashboard")
st.subheader("Welcome User, start using the application by uploading your file in the sidebar!")
# Session States
if 'uploaded' not in st.session_state:
st.session_state.uploaded = False
if 'preprocessed_data' not in st.session_state:
st.session_state.preprocessed_data = None
# Sidebar Menu
with st.sidebar:
uploaded_file = st.file_uploader("Upload your Store Data here (must atleast contain Date and Sale)", type=["csv"])
err = 0
if uploaded_file is not None:
if uploaded_file.type != 'text/csv':
err = 1
st.info('Please upload in CSV format only...')
else:
st.success("File uploaded successfully!")
df = pd.read_csv(uploaded_file, parse_dates=True)
st.write("Your uploaded data:")
st.write(df)
# Data pre-processing
df = drop(df)
df = date_format(df)
merge_sort(df)
df = group_to_three(df)
st.session_state.uploaded = True
with open('sample.csv', 'rb') as f:
st.download_button("Download our sample CSV", f, file_name='sample.csv')
if (st.session_state.uploaded):
st.line_chart(df)
period = st.slider('How many days would you like to forecast?', min_value=30, max_value=90)
forecast_period = round(period / 3)
forecast_button = st.button(
'Start Forecasting',
key='forecast_button',
type="primary",
)
if (forecast_button):
df = df.to_frame()
df = df.reset_index()
df = df.set_index('Date')
df = df.dropna()
# Create the eXogenous values
df['Sales First Difference'] = df['Sales'] - df['Sales'].shift(1)
df['Seasonal First Difference'] = df['Sales'] - df['Sales'].shift(12)
df = df.dropna()
auto_train_test = train_test(df)
training_y, test_y, test_y_series, training_X, test_X, future_X = auto_train_test
# Auto_arima to fit the model to forecast future sales
future_model = model_fitting(df, future_X)
# Auto_arima to check the accuracy of the train test split
train_test_model = test_fitting(df, training_X, training_y)
# Forecast (testing)
n_periods = round(len(df) * 0.2)
fitted, confint = train_test_model.predict(X=test_X, n_periods=n_periods, return_conf_int=True)
index_of_fc = test_y_series.index
# make series for plotting purpose
fitted_series = pd.Series(fitted)
fitted_series.index=index_of_fc
lower_series = pd.Series(confint[:, 0], index=index_of_fc)
upper_series = pd.Series(confint[:, 1], index=index_of_fc)
test_y, predictions = np.array(test_y), np.array(fitted)
forecast_accuracy(predictions, test_y)
st.title("Forecasted Sales")
# Plot
# plt.figure(figsize=(12,8))
# plt.plot(training_y[-80:])
# plt.plot(test_y, color = 'red', label = 'Actual Sales')
# plt.plot(fitted_series, color='darkgreen', label = 'Predicted Sales')
# plt.fill_between(lower_series.index,
# lower_series,
# upper_series,
# color='k', alpha=.15)
# plt.title("SARIMAX - Forecast of Retail Sales VS Actual Sales")
# plt.legend(loc='upper left', fontsize=8)
# plt.show()
trace_actual = go.Scatter(x=range(len(training_y) - 80, len(training_y)),
y=training_y[-80:],
mode='lines',
name='Training Data')
trace_actual_sales = go.Scatter(x=range(len(training_y), len(training_y) + len(test_y)),
y=test_y,
mode='lines',
name='Actual Sales',
line=dict(color='red'))
trace_predicted_sales = go.Scatter(x=range(len(training_y), len(training_y) + len(fitted_series)),
y=fitted_series,
mode='lines',
name='Predicted Sales',
line=dict(color='darkgreen'))
trace_fill_between = go.Scatter(x=list(range(len(training_y), len(training_y) + len(lower_series))) +
list(range(len(training_y) + len(lower_series), len(training_y) + len(upper_series))),
y=list(lower_series) + list(upper_series)[::-1],
fill='toself',
fillcolor='rgba(0,100,80,0.2)',
line=dict(color='rgba(255,255,255,0)'),
name='Prediction Interval')
# Combine traces and create layout
data = [trace_actual, trace_actual_sales, trace_predicted_sales, trace_fill_between]
layout = go.Layout(title="SARIMAX - Forecast of Retail Sales VS Actual Sales",
legend=dict(x=0, y=1.0),
xaxis=dict(title='X-axis Label'),
yaxis=dict(title='Y-axis Label'))
fig_test = go.Figure(data=data, layout=layout)
st.plotly_chart(fig_test)
# Forecast (actual)
n_periods = forecast_period
freq='3D'
future_fitted, confint = future_model.predict(X=df.iloc[-n_periods:,1:], n_periods=n_periods, return_conf_int=True, freq=freq)
future_index_of_fc = pd.date_range(df['Sales'].index[-1], periods = n_periods, freq=freq)
# make series for plotting purpose
future_fitted_series = pd.Series(future_fitted)
future_fitted_series.index=future_index_of_fc
future_lower_series = pd.Series(confint[:, 0], index=future_index_of_fc)
future_upper_series = pd.Series(confint[:, 1], index=future_index_of_fc)
# Plot
# plt.figure(figsize=(12,8))
# plt.plot(df['Sales'][-50:])
# plt.plot(future_fitted_series, color='darkgreen')
# plt.fill_between(future_lower_series.index,
# future_lower_series,
# future_upper_series,
# color='k', alpha=.15)
# plt.title("SARIMA - Final Forecast of Retail Sales")
# plt.show()
# Create traces for each line and fill_between
trace_sales = go.Scatter(x=df.index[-50:],
y=df['Sales'][-50:],
mode='lines',
name='Sales')
trace_predicted_sales = go.Scatter(x=df.index[-50:] + future_fitted_series.index,
y=future_fitted_series,
mode='lines',
name='Predicted Sales',
line=dict(color='darkgreen'))
trace_fill_between = go.Scatter(x=list(df.index[-50:] + future_lower_series.index) +
list(df.index[-50:] + future_upper_series.index[::-1]),
y=list(future_lower_series) + list(future_upper_series)[::-1],
fill='toself',
fillcolor='rgba(0,100,80,0.2)',
line=dict(color='rgba(255,255,255,0)'),
name='Prediction Interval')
# Combine traces and create layout
data = [trace_sales, trace_predicted_sales, trace_fill_between]
layout = go.Layout(title="SARIMA - Final Forecast of Retail Sales",
legend=dict(x=0, y=1.0),
xaxis=dict(title='X-axis Label'),
yaxis=dict(title='Y-axis Label'))
fig_final = go.Figure(data=data, layout=layout)
st.plotly_chart(fig_final)
auto_sales_growth = sales_growth(df, future_fitted_series)
df = auto_sales_growth
df = df.reset_index()
df['Date'] = df['Date'].dt.strftime('%B %d, %Y')
df[df.columns] = df[df.columns].astype(str)
st.write("Forecasted sales in the next 3 months")
st.write(df)
with st.form("question_form"):
question = st.text_input('Ask a Question about the Forecasted Data', placeholder="What is the total sales in the month of December?")
query_button = st.form_submit_button(label='Generate Answer')
if query_button:
answer = get_converted_answer(df, question)
st.write("The answer is:", answer) |