File size: 9,659 Bytes
a7fd2fe
39440ed
e2cb6ae
 
 
 
 
 
 
 
 
0921718
 
 
 
 
 
 
e2cb6ae
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3e41dea
e2cb6ae
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3e41dea
 
db843a0
3e41dea
e2cb6ae
 
 
3e41dea
e2cb6ae
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a7fd2fe
1898dec
 
 
39440ed
1898dec
39440ed
e2cb6ae
1898dec
39440ed
 
 
 
 
 
 
 
 
 
 
 
 
 
e2cb6ae
39440ed
e2cb6ae
 
 
 
 
 
39440ed
e2cb6ae
 
 
 
 
1898dec
e2cb6ae
 
 
 
 
1898dec
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
import streamlit as st
import pandas as pd
from datetime import datetime

import numpy as np
import pmdarima as pm
from pmdarima import auto_arima

import torch
from transformers import pipeline, TapasTokenizer, TapasForQuestionAnswering

st.set_page_config(
      page_title="Sales Forecasting System",
      page_icon="πŸ“ˆ",
      layout="wide",
      initial_sidebar_state="expanded",
)

# Preprocessing
def merge(B, C, A):
  i = j = k = 0

  # Convert 'Date' columns to datetime.date objects
  B['Date'] = pd.to_datetime(B['Date']).dt.date
  C['Date'] = pd.to_datetime(C['Date']).dt.date
  A['Date'] = pd.to_datetime(A['Date']).dt.date

  while i < len(B) and j < len(C):
    if B['Date'].iloc[i] <= C['Date'].iloc[j]:
      A['Date'].iloc[k] = B['Date'].iloc[i]
      A['Sales'].iloc[k] = B['Sales'].iloc[i]
      i += 1
      
    else:
      A['Date'].iloc[k] = C['Date'].iloc[j]
      A['Sales'].iloc[k] = C['Sales'].iloc[j]
      j += 1
    k += 1

  while i < len(B):
    A['Date'].iloc[k] = B['Date'].iloc[i]
    A['Sales'].iloc[k] = B['Sales'].iloc[i]
    i += 1
    k += 1

  while j < len(C):
    A['Date'].iloc[k] = C['Date'].iloc[j]
    A['Sales'].iloc[k] = C['Sales'].iloc[j]
    j += 1
    k += 1

  return A

def merge_sort(dataframe):
  if len(dataframe) > 1:
      center = len(dataframe) // 2
      left = dataframe.iloc[:center]
      right = dataframe.iloc[center:]
      merge_sort(left)
      merge_sort(right)

      return merge(left, right, dataframe)

  else:
      return dataframe

def drop (dataframe):
  def get_columns_containing(dataframe, substrings):
    return [col for col in dataframe.columns if any(substring.lower() in col.lower() for substring in substrings)]

  columns_to_keep = get_columns_containing(dataframe, ["date", "sale"])
  dataframe = dataframe.drop(columns=dataframe.columns.difference(columns_to_keep))
  dataframe = dataframe.dropna()
    
  return dataframe

def date_format(dataframe):
  for i, d, s in dataframe.itertuples():
    dataframe['Date'][i] = dataframe['Date'][i].strip()

  for i, d, s in dataframe.itertuples():
    new_date = datetime.strptime(dataframe['Date'][i], "%m/%d/%Y").date()
    dataframe['Date'][i] = new_date

  return dataframe

def group_to_three(dataframe):
  dataframe['Date'] = pd.to_datetime(dataframe['Date'])
  dataframe = dataframe.groupby([pd.Grouper(key='Date', freq='3D')])['Sales'].mean().round(2)
  dataframe = dataframe.replace(0, np.nan).dropna()

  return dataframe

# SARIMAX Model
def train_test(dataframe, n):
  training_y = dataframe.iloc[:-n,0]
  test_y = dataframe.iloc[-n:,0]
  test_y_series = pd.Series(test_y, index=dataframe.iloc[-n:, 0].index)
  training_X = dataframe.iloc[:-n,1:]
  test_X = dataframe.iloc[-n:,1:]
  future_X = dataframe.iloc[0:,1:]
  return (training_y, test_y, test_y_series, training_X, test_X, future_X)

def model_fitting(dataframe, Exo):
    futureModel = pm.auto_arima(dataframe['Sales'], X=Exo, start_p=1, start_q=1,
                         test='adf',min_p=1,min_q=1,
                         max_p=3, max_q=3, m=12,
                         start_P=0, seasonal=True,
                         d=None, D=1, trace=True,
                         error_action='ignore',
                         suppress_warnings=True,
                         stepwise=True)
    model = futureModel
    return model

def test_fitting(dataframe, Exo, trainY):
    trainTestModel = auto_arima(X = Exo, y = trainY, start_p=1, start_q=1,
                           test='adf',min_p=1,min_q=1,
                           max_p=3, max_q=3, m=12,
                           start_P=0, seasonal=True,
                           d=None, D=1, trace=True,
                           error_action='ignore',
                           suppress_warnings=True,
                           stepwise=True)
    model = trainTestModel
    return model

def forecast_accuracy(forecast, actual):
    mape = np.mean(np.abs(forecast - actual)/np.abs(actual)).round(4)  # MAPE
    rmse = (np.mean((forecast - actual)**2)**.5).round(2)  # RMSE
    corr = np.corrcoef(forecast, actual)[0,1]   # corr
    mins = np.amin(np.hstack([forecast[:,None],
                            actual[:,None]]), axis=1)
    maxs = np.amax(np.hstack([forecast[:,None],
                            actual[:,None]]), axis=1)
    minmax = 1 - np.mean(mins/maxs)             # minmax
    return({'mape':mape, 'rmse':rmse, 'corr':corr, 'min-max':minmax})

def sales_growth(dataframe, fittedValues):
    sales_growth = fittedValues.to_frame()
    sales_growth = sales_growth.reset_index()
    sales_growth.columns = ("Date", "Sales")
    sales_growth = sales_growth.set_index('Date')

    sales_growth['Sales'] = (sales_growth['Sales']).round(2)

    #Calculate and create the column for sales difference and growth
    sales_growth['Forecasted Sales First Difference']=(sales_growth['Sales']-sales_growth['Sales'].shift(1)).round(2)
    sales_growth['Forecasted Sales Growth']=(((sales_growth['Sales']-sales_growth['Sales'].shift(1))/sales_growth['Sales'].shift(1))*100).round(2)

    #Calculate and create the first row for sales difference and growth
    sales_growth['Forecasted Sales First Difference'].iloc[0] = (dataframe['Sales'].iloc[-1]-dataframe['Sales'].iloc[-2]).round(2)
    sales_growth['Forecasted Sales Growth'].iloc[0]=(((dataframe['Sales'].iloc[-1]-dataframe['Sales'].iloc[-2])/dataframe['Sales'].iloc[-1])*100).round(2)


    return sales_growth

# TAPAS Model
model_name = "google/tapas-large-finetuned-wtq"
tokenizer = TapasTokenizer.from_pretrained(model_name)
model = TapasForQuestionAnswering.from_pretrained(model_name, local_files_only=False)

def load_tapas_model(model, tokenizer):
  pipe = pipeline("table-question-answering", model=model, tokenizer=tokenizer)
  return pipe

pipe = load_tapas_model(model, tokenizer)

def get_answer(table, query):
    answers = pipe(table=table, query=query)
    return answers

def convert_answer(answer):
    if answer['aggregator'] == 'SUM':
      cells = answer['cells']
      converted = sum(float(value.replace(',', '')) for value in cells)
      return converted

    if answer['aggregator'] == 'AVERAGE':
      cells = answer['cells']
      values = [float(value.replace(',', '')) for value in cells]
      converted = sum(values) / len(values)
      return converted

    if answer['aggregator'] == 'COUNT':
      cells = answer['cells']
      converted = sum(int(value.replace(',', '')) for value in cells)
      return converted

    else:
      return answer

def get_converted_answer(table, query):
    converted_answer = convert_answer(get_answer(table, query))
    return converted_answer


# Web Application

st.title("Sales Forecasting Dashboard")
st.write("πŸ“ˆ Welcome User, start using the application by uploading your file in the sidebar!")

if 'uploaded' not in st.session_state:
  st.session_state.uploaded = False

# Sidebar Menu
with st.sidebar:
    uploaded_file = st.file_uploader("Upload your Store Data here (must atleast contain Date and Sale)", type=["csv"])
    err = 0
    if uploaded_file is not None:
      if uploaded_file.type != 'text/csv':
            err = 1
            st.info('Please upload in CSV format only...')
      else: 
        st.success("File uploaded successfully!")
        df = pd.read_csv(uploaded_file, parse_dates=True)
        st.write("Your uploaded data:")
        st.write(df)

        # Data pre-processing
        df = drop(df)
        df = date_format(df)
        merge_sort(df)
        df = group_to_three(df)
        st.session_state.uploaded = True

    with open('sample.csv', 'rb') as f:
       st.download_button("Download our sample CSV", f, file_name='sample.csv')

if (st.session_state.uploaded):
  st.line_chart(df)

  forecast_button = st.button(
    'Start Forecasting',
    key='forecast_button',
    type="primary",
  )

  if (forecast_button):
    # Create the eXogenous values
    df['Sales First Difference'] = df['Sales'] - df['Sales'].shift(1)
    df['Seasonal First Difference'] = df['Sales'] - df['Sales'].shift(12)

    auto_train_test = train_test(df, 20)
    training_y, test_y, test_y_series, training_X, test_X, future_X = auto_train_test

    # Auto_arima to fit the model to forecast future sales
    future_model = model_fitting(df, future_X)
    # Auto_arima to check the accuracy of the train test split
    train_test_model = test_fitting(df, training_X, training_y)

    # Forecast (testing)
    n_periods = 20
    fitted, confint = train_test_model.predict(X=test_X, n_periods=n_periods, return_conf_int=True)
    index_of_fc = test_y_series.index

    # make series for plotting purpose
    fitted_series = pd.Series(fitted)
    fitted_series.index=index_of_fc
    lower_series = pd.Series(confint[:, 0], index=index_of_fc)
    upper_series = pd.Series(confint[:, 1], index=index_of_fc)

    test_y, predictions = np.array(test_y), np.array(fitted)
    forecast_accuracy(predictions, test_y)

    # Forecast (actual)
    n_periods = 36
    freq='3D'
    future_fitted, confint = future_model.predict(X=df.iloc[-n_periods:,1:], n_periods=n_periods, return_conf_int=True, freq=freq)
    future_index_of_fc = pd.date_range(df['Sales'].index[-1], periods = n_periods, freq=freq)

    # make series for plotting purpose
    future_fitted_series = pd.Series(future_fitted)
    future_fitted_series.index=future_index_of_fc
    future_lower_series = pd.Series(confint[:, 0], index=future_index_of_fc)
    future_upper_series = pd.Series(confint[:, 1], index=future_index_of_fc)

    auto_sales_growth = sales_growth(df, future_fitted_series)
    st.write("Forecasted sales in the next 3 months")
    st.write(auto_sales_growth)