import gradio as gr from PIL import Image import os import torch import torch.nn.functional as F import torchvision.transforms as transforms import torchvision import numpy as np import yaml from huggingface_hub import hf_hub_download from ultralytics import YOLO device = torch.device('cuda') if torch.cuda.is_available() else torch.device('cpu') model = YOLO('Models/yolov8m.pt') checkpoints = torch.load('Models/haze_detection.pt', map_location=device) model.load_state_dict(checkpoints['model_state_dict']) model = model.to(device) def load_img (filename): img = Image.open(filename).convert("RGB") img_tensor = pil_to_tensor(img) return img_tensor def process_img(image): img = np.array(image) img = img / 255. img = img.astype(np.float32) y = torch.tensor(img).permute(2,0,1).unsqueeze(0).to(device) with torch.no_grad(): result = model(y) restored_img = result.squeeze().permute(1,2,0).clamp_(0, 1).cpu().detach().numpy() restored_img = np.clip(restored_img, 0. , 1.) restored_img = (restored_img * 255.0).round().astype(np.uint8) # float32 to uint8 return Image.fromarray(restored_img) title = "Efficient Hazy Vehicle Detection ✏️[] 🤗" description = ''' ## [Efficient Hazy Vehicle Detection](https://github.com/cidautai) [Paula Garrido Mellado](https://github.com/paugar5) Fundación Cidaut > **Disclaimer:** please remember this is not a product, thus, you will notice some limitations. **This demo expects an image with some degradations.** Due to the GPU memory limitations, the app might crash if you feed a high-resolution image (2K, 4K).
'''