Utils uploaded
Browse files- utils/arch_utils.py +309 -0
- utils/utils.py +296 -0
utils/arch_utils.py
ADDED
@@ -0,0 +1,309 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import math
|
2 |
+
import torch
|
3 |
+
|
4 |
+
from torch import nn as nn
|
5 |
+
from torch.nn import functional as F
|
6 |
+
from torch.nn import init as init
|
7 |
+
from torch.nn.modules.batchnorm import _BatchNorm
|
8 |
+
|
9 |
+
|
10 |
+
@torch.no_grad()
|
11 |
+
def default_init_weights(module_list, scale=1, bias_fill=0, **kwargs):
|
12 |
+
"""Initialize network weights.
|
13 |
+
|
14 |
+
Args:
|
15 |
+
module_list (list[nn.Module] | nn.Module): Modules to be initialized.
|
16 |
+
scale (float): Scale initialized weights, especially for residual
|
17 |
+
blocks. Default: 1.
|
18 |
+
bias_fill (float): The value to fill bias. Default: 0
|
19 |
+
kwargs (dict): Other arguments for initialization function.
|
20 |
+
"""
|
21 |
+
if not isinstance(module_list, list):
|
22 |
+
module_list = [module_list]
|
23 |
+
for module in module_list:
|
24 |
+
for m in module.modules():
|
25 |
+
if isinstance(m, nn.Conv2d):
|
26 |
+
init.kaiming_normal_(m.weight, **kwargs)
|
27 |
+
m.weight.data *= scale
|
28 |
+
if m.bias is not None:
|
29 |
+
m.bias.data.fill_(bias_fill)
|
30 |
+
elif isinstance(m, nn.Linear):
|
31 |
+
init.kaiming_normal_(m.weight, **kwargs)
|
32 |
+
m.weight.data *= scale
|
33 |
+
if m.bias is not None:
|
34 |
+
m.bias.data.fill_(bias_fill)
|
35 |
+
elif isinstance(m, _BatchNorm):
|
36 |
+
init.constant_(m.weight, 1)
|
37 |
+
if m.bias is not None:
|
38 |
+
m.bias.data.fill_(bias_fill)
|
39 |
+
|
40 |
+
|
41 |
+
def make_layer(basic_block, num_basic_block, **kwarg):
|
42 |
+
"""Make layers by stacking the same blocks.
|
43 |
+
|
44 |
+
Args:
|
45 |
+
basic_block (nn.module): nn.module class for basic block.
|
46 |
+
num_basic_block (int): number of blocks.
|
47 |
+
|
48 |
+
Returns:
|
49 |
+
nn.Sequential: Stacked blocks in nn.Sequential.
|
50 |
+
"""
|
51 |
+
layers = []
|
52 |
+
for _ in range(num_basic_block):
|
53 |
+
layers.append(basic_block(**kwarg))
|
54 |
+
return nn.Sequential(*layers)
|
55 |
+
|
56 |
+
|
57 |
+
class ResidualBlockNoBN(nn.Module):
|
58 |
+
"""Residual block without BN.
|
59 |
+
|
60 |
+
It has a style of:
|
61 |
+
---Conv-ReLU-Conv-+-
|
62 |
+
|________________|
|
63 |
+
|
64 |
+
Args:
|
65 |
+
num_feat (int): Channel number of intermediate features.
|
66 |
+
Default: 64.
|
67 |
+
res_scale (float): Residual scale. Default: 1.
|
68 |
+
pytorch_init (bool): If set to True, use pytorch default init,
|
69 |
+
otherwise, use default_init_weights. Default: False.
|
70 |
+
"""
|
71 |
+
|
72 |
+
def __init__(self, num_feat=64, res_scale=1, pytorch_init=False):
|
73 |
+
super(ResidualBlockNoBN, self).__init__()
|
74 |
+
self.res_scale = res_scale
|
75 |
+
self.conv1 = nn.Conv2d(num_feat, num_feat, 3, 1, 1, bias=True)
|
76 |
+
self.conv2 = nn.Conv2d(num_feat, num_feat, 3, 1, 1, bias=True)
|
77 |
+
self.relu = nn.ReLU(inplace=True)
|
78 |
+
|
79 |
+
if not pytorch_init:
|
80 |
+
default_init_weights([self.conv1, self.conv2], 0.1)
|
81 |
+
|
82 |
+
def forward(self, x):
|
83 |
+
identity = x
|
84 |
+
out = self.conv2(self.relu(self.conv1(x)))
|
85 |
+
return identity + out * self.res_scale
|
86 |
+
|
87 |
+
|
88 |
+
class Upsample(nn.Sequential):
|
89 |
+
"""Upsample module.
|
90 |
+
|
91 |
+
Args:
|
92 |
+
scale (int): Scale factor. Supported scales: 2^n and 3.
|
93 |
+
num_feat (int): Channel number of intermediate features.
|
94 |
+
"""
|
95 |
+
|
96 |
+
def __init__(self, scale, num_feat):
|
97 |
+
m = []
|
98 |
+
if (scale & (scale - 1)) == 0: # scale = 2^n
|
99 |
+
for _ in range(int(math.log(scale, 2))):
|
100 |
+
m.append(nn.Conv2d(num_feat, 4 * num_feat, 3, 1, 1))
|
101 |
+
m.append(nn.PixelShuffle(2))
|
102 |
+
elif scale == 3:
|
103 |
+
m.append(nn.Conv2d(num_feat, 9 * num_feat, 3, 1, 1))
|
104 |
+
m.append(nn.PixelShuffle(3))
|
105 |
+
else:
|
106 |
+
raise ValueError(f'scale {scale} is not supported. '
|
107 |
+
'Supported scales: 2^n and 3.')
|
108 |
+
super(Upsample, self).__init__(*m)
|
109 |
+
|
110 |
+
|
111 |
+
def flow_warp(x,
|
112 |
+
flow,
|
113 |
+
interp_mode='bilinear',
|
114 |
+
padding_mode='zeros',
|
115 |
+
align_corners=True):
|
116 |
+
"""Warp an image or feature map with optical flow.
|
117 |
+
|
118 |
+
Args:
|
119 |
+
x (Tensor): Tensor with size (n, c, h, w).
|
120 |
+
flow (Tensor): Tensor with size (n, h, w, 2), normal value.
|
121 |
+
interp_mode (str): 'nearest' or 'bilinear'. Default: 'bilinear'.
|
122 |
+
padding_mode (str): 'zeros' or 'border' or 'reflection'.
|
123 |
+
Default: 'zeros'.
|
124 |
+
align_corners (bool): Before pytorch 1.3, the default value is
|
125 |
+
align_corners=True. After pytorch 1.3, the default value is
|
126 |
+
align_corners=False. Here, we use the True as default.
|
127 |
+
|
128 |
+
Returns:
|
129 |
+
Tensor: Warped image or feature map.
|
130 |
+
"""
|
131 |
+
assert x.size()[-2:] == flow.size()[1:3]
|
132 |
+
_, _, h, w = x.size()
|
133 |
+
# create mesh grid
|
134 |
+
grid_y, grid_x = torch.meshgrid(
|
135 |
+
torch.arange(0, h).type_as(x),
|
136 |
+
torch.arange(0, w).type_as(x))
|
137 |
+
grid = torch.stack((grid_x, grid_y), 2).float() # W(x), H(y), 2
|
138 |
+
grid.requires_grad = False
|
139 |
+
|
140 |
+
vgrid = grid + flow
|
141 |
+
# scale grid to [-1,1]
|
142 |
+
vgrid_x = 2.0 * vgrid[:, :, :, 0] / max(w - 1, 1) - 1.0
|
143 |
+
vgrid_y = 2.0 * vgrid[:, :, :, 1] / max(h - 1, 1) - 1.0
|
144 |
+
vgrid_scaled = torch.stack((vgrid_x, vgrid_y), dim=3)
|
145 |
+
output = F.grid_sample(
|
146 |
+
x,
|
147 |
+
vgrid_scaled,
|
148 |
+
mode=interp_mode,
|
149 |
+
padding_mode=padding_mode,
|
150 |
+
align_corners=align_corners)
|
151 |
+
|
152 |
+
# TODO, what if align_corners=False
|
153 |
+
return output
|
154 |
+
|
155 |
+
|
156 |
+
def resize_flow(flow,
|
157 |
+
size_type,
|
158 |
+
sizes,
|
159 |
+
interp_mode='bilinear',
|
160 |
+
align_corners=False):
|
161 |
+
"""Resize a flow according to ratio or shape.
|
162 |
+
|
163 |
+
Args:
|
164 |
+
flow (Tensor): Precomputed flow. shape [N, 2, H, W].
|
165 |
+
size_type (str): 'ratio' or 'shape'.
|
166 |
+
sizes (list[int | float]): the ratio for resizing or the final output
|
167 |
+
shape.
|
168 |
+
1) The order of ratio should be [ratio_h, ratio_w]. For
|
169 |
+
downsampling, the ratio should be smaller than 1.0 (i.e., ratio
|
170 |
+
< 1.0). For upsampling, the ratio should be larger than 1.0 (i.e.,
|
171 |
+
ratio > 1.0).
|
172 |
+
2) The order of output_size should be [out_h, out_w].
|
173 |
+
interp_mode (str): The mode of interpolation for resizing.
|
174 |
+
Default: 'bilinear'.
|
175 |
+
align_corners (bool): Whether align corners. Default: False.
|
176 |
+
|
177 |
+
Returns:
|
178 |
+
Tensor: Resized flow.
|
179 |
+
"""
|
180 |
+
_, _, flow_h, flow_w = flow.size()
|
181 |
+
if size_type == 'ratio':
|
182 |
+
output_h, output_w = int(flow_h * sizes[0]), int(flow_w * sizes[1])
|
183 |
+
elif size_type == 'shape':
|
184 |
+
output_h, output_w = sizes[0], sizes[1]
|
185 |
+
else:
|
186 |
+
raise ValueError(
|
187 |
+
f'Size type should be ratio or shape, but got type {size_type}.')
|
188 |
+
|
189 |
+
input_flow = flow.clone()
|
190 |
+
ratio_h = output_h / flow_h
|
191 |
+
ratio_w = output_w / flow_w
|
192 |
+
input_flow[:, 0, :, :] *= ratio_w
|
193 |
+
input_flow[:, 1, :, :] *= ratio_h
|
194 |
+
resized_flow = F.interpolate(
|
195 |
+
input=input_flow,
|
196 |
+
size=(output_h, output_w),
|
197 |
+
mode=interp_mode,
|
198 |
+
align_corners=align_corners)
|
199 |
+
return resized_flow
|
200 |
+
|
201 |
+
|
202 |
+
# TODO: may write a cpp file
|
203 |
+
def pixel_unshuffle(x, scale):
|
204 |
+
""" Pixel unshuffle.
|
205 |
+
|
206 |
+
Args:
|
207 |
+
x (Tensor): Input feature with shape (b, c, hh, hw).
|
208 |
+
scale (int): Downsample ratio.
|
209 |
+
|
210 |
+
Returns:
|
211 |
+
Tensor: the pixel unshuffled feature.
|
212 |
+
"""
|
213 |
+
b, c, hh, hw = x.size()
|
214 |
+
out_channel = c * (scale**2)
|
215 |
+
assert hh % scale == 0 and hw % scale == 0
|
216 |
+
h = hh // scale
|
217 |
+
w = hw // scale
|
218 |
+
x_view = x.view(b, c, h, scale, w, scale)
|
219 |
+
return x_view.permute(0, 1, 3, 5, 2, 4).reshape(b, out_channel, h, w)
|
220 |
+
|
221 |
+
|
222 |
+
|
223 |
+
class LayerNormFunction(torch.autograd.Function):
|
224 |
+
|
225 |
+
@staticmethod
|
226 |
+
def forward(ctx, x, weight, bias, eps):
|
227 |
+
ctx.eps = eps
|
228 |
+
N, C, H, W = x.size()
|
229 |
+
mu = x.mean(1, keepdim=True)
|
230 |
+
var = (x - mu).pow(2).mean(1, keepdim=True)
|
231 |
+
y = (x - mu) / (var + eps).sqrt()
|
232 |
+
ctx.save_for_backward(y, var, weight)
|
233 |
+
y = weight.view(1, C, 1, 1) * y + bias.view(1, C, 1, 1)
|
234 |
+
return y
|
235 |
+
|
236 |
+
@staticmethod
|
237 |
+
def backward(ctx, grad_output):
|
238 |
+
eps = ctx.eps
|
239 |
+
|
240 |
+
N, C, H, W = grad_output.size()
|
241 |
+
y, var, weight = ctx.saved_variables
|
242 |
+
g = grad_output * weight.view(1, C, 1, 1)
|
243 |
+
mean_g = g.mean(dim=1, keepdim=True)
|
244 |
+
|
245 |
+
mean_gy = (g * y).mean(dim=1, keepdim=True)
|
246 |
+
gx = 1. / torch.sqrt(var + eps) * (g - y * mean_gy - mean_g)
|
247 |
+
return gx, (grad_output * y).sum(dim=3).sum(dim=2).sum(dim=0), grad_output.sum(dim=3).sum(dim=2).sum(
|
248 |
+
dim=0), None
|
249 |
+
|
250 |
+
class LayerNorm2d(nn.Module):
|
251 |
+
|
252 |
+
def __init__(self, channels, eps=1e-6):
|
253 |
+
super(LayerNorm2d, self).__init__()
|
254 |
+
self.register_parameter('weight', nn.Parameter(torch.ones(channels)))
|
255 |
+
self.register_parameter('bias', nn.Parameter(torch.zeros(channels)))
|
256 |
+
self.eps = eps
|
257 |
+
|
258 |
+
def forward(self, x):
|
259 |
+
return LayerNormFunction.apply(x, self.weight, self.bias, self.eps)
|
260 |
+
|
261 |
+
# handle multiple input
|
262 |
+
class MySequential(nn.Sequential):
|
263 |
+
def forward(self, *inputs):
|
264 |
+
for module in self._modules.values():
|
265 |
+
if type(inputs) == tuple:
|
266 |
+
inputs = module(*inputs)
|
267 |
+
else:
|
268 |
+
inputs = module(inputs)
|
269 |
+
return inputs
|
270 |
+
|
271 |
+
import time
|
272 |
+
def measure_inference_speed(model, data, max_iter=200, log_interval=50):
|
273 |
+
model.eval()
|
274 |
+
|
275 |
+
# the first several iterations may be very slow so skip them
|
276 |
+
num_warmup = 5
|
277 |
+
pure_inf_time = 0
|
278 |
+
fps = 0
|
279 |
+
|
280 |
+
# benchmark with 2000 image and take the average
|
281 |
+
for i in range(max_iter):
|
282 |
+
|
283 |
+
torch.cuda.synchronize()
|
284 |
+
start_time = time.perf_counter()
|
285 |
+
|
286 |
+
with torch.no_grad():
|
287 |
+
model(*data)
|
288 |
+
|
289 |
+
torch.cuda.synchronize()
|
290 |
+
elapsed = time.perf_counter() - start_time
|
291 |
+
|
292 |
+
if i >= num_warmup:
|
293 |
+
pure_inf_time += elapsed
|
294 |
+
if (i + 1) % log_interval == 0:
|
295 |
+
fps = (i + 1 - num_warmup) / pure_inf_time
|
296 |
+
print(
|
297 |
+
f'Done image [{i + 1:<3}/ {max_iter}], '
|
298 |
+
f'fps: {fps:.1f} img / s, '
|
299 |
+
f'times per image: {1000 / fps:.1f} ms / img',
|
300 |
+
flush=True)
|
301 |
+
|
302 |
+
if (i + 1) == max_iter:
|
303 |
+
fps = (i + 1 - num_warmup) / pure_inf_time
|
304 |
+
print(
|
305 |
+
f'Overall fps: {fps:.1f} img / s, '
|
306 |
+
f'times per image: {1000 / fps:.1f} ms / img',
|
307 |
+
flush=True)
|
308 |
+
break
|
309 |
+
return fps
|
utils/utils.py
ADDED
@@ -0,0 +1,296 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import torch
|
2 |
+
import torch.nn as nn
|
3 |
+
import torch.nn.functional as F
|
4 |
+
import torch.nn.init as init
|
5 |
+
|
6 |
+
from utils.arch_utils import LayerNorm2d
|
7 |
+
|
8 |
+
def initialize_weights(net_l, scale=1):
|
9 |
+
if not isinstance(net_l, list):
|
10 |
+
net_l = [net_l]
|
11 |
+
for net in net_l:
|
12 |
+
for m in net.modules():
|
13 |
+
if isinstance(m, nn.Conv2d):
|
14 |
+
init.kaiming_normal_(m.weight, a=0, mode='fan_in')
|
15 |
+
m.weight.data *= scale # for residual block
|
16 |
+
if m.bias is not None:
|
17 |
+
m.bias.data.zero_()
|
18 |
+
elif isinstance(m, nn.Linear):
|
19 |
+
init.kaiming_normal_(m.weight, a=0, mode='fan_in')
|
20 |
+
m.weight.data *= scale
|
21 |
+
if m.bias is not None:
|
22 |
+
m.bias.data.zero_()
|
23 |
+
elif isinstance(m, nn.BatchNorm2d):
|
24 |
+
init.constant_(m.weight, 1)
|
25 |
+
init.constant_(m.bias.data, 0.0)
|
26 |
+
|
27 |
+
|
28 |
+
def make_layer(block, n_layers):
|
29 |
+
layers = []
|
30 |
+
for _ in range(n_layers):
|
31 |
+
layers.append(block())
|
32 |
+
return nn.Sequential(*layers)
|
33 |
+
|
34 |
+
|
35 |
+
class ResidualBlock_noBN(nn.Module):
|
36 |
+
'''Residual block w/o BN
|
37 |
+
---Conv-ReLU-Conv-+-
|
38 |
+
|________________|
|
39 |
+
'''
|
40 |
+
|
41 |
+
def __init__(self, nf=64):
|
42 |
+
super(ResidualBlock_noBN, self).__init__()
|
43 |
+
self.conv1 = nn.Conv2d(nf, nf, 3, 1, 1, bias=True)
|
44 |
+
self.conv2 = nn.Conv2d(nf, nf, 3, 1, 1, bias=True)
|
45 |
+
|
46 |
+
# initialization
|
47 |
+
initialize_weights([self.conv1, self.conv2], 0.1)
|
48 |
+
|
49 |
+
def forward(self, x):
|
50 |
+
identity = x
|
51 |
+
out = F.relu(self.conv1(x), inplace=True)
|
52 |
+
out = self.conv2(out)
|
53 |
+
return identity + out
|
54 |
+
|
55 |
+
class ResidualBlock(nn.Module):
|
56 |
+
'''Residual block w/o BN
|
57 |
+
---Conv-ReLU-Conv-+-
|
58 |
+
|________________|
|
59 |
+
'''
|
60 |
+
|
61 |
+
def __init__(self, nf=64):
|
62 |
+
super(ResidualBlock, self).__init__()
|
63 |
+
self.conv1 = nn.Conv2d(nf, nf, 3, 1, 1, bias=True)
|
64 |
+
self.bn = nn.BatchNorm2d(nf)
|
65 |
+
self.conv2 = nn.Conv2d(nf, nf, 3, 1, 1, bias=True)
|
66 |
+
|
67 |
+
# initialization
|
68 |
+
initialize_weights([self.conv1, self.conv2], 0.1)
|
69 |
+
|
70 |
+
def forward(self, x):
|
71 |
+
identity = x
|
72 |
+
out = F.relu(self.bn(self.conv1(x)), inplace=True)
|
73 |
+
out = self.conv2(out)
|
74 |
+
return identity + out
|
75 |
+
|
76 |
+
###########################################################################################################
|
77 |
+
|
78 |
+
|
79 |
+
class SimpleGate(nn.Module):
|
80 |
+
def forward(self, x):
|
81 |
+
x1, x2 = x.chunk(2, dim=1)
|
82 |
+
return x1 * x2
|
83 |
+
|
84 |
+
class SGE(nn.Module):
|
85 |
+
def __init__(self, dw_channel):
|
86 |
+
super().__init__()
|
87 |
+
self.dwc = nn.Conv2d(in_channels=dw_channel //2, out_channels=dw_channel//2, kernel_size=3, padding=1, stride=1, groups=dw_channel//2, bias=True)
|
88 |
+
def forward(self, x):
|
89 |
+
x1, x2 = x.chunk(2, dim=1)
|
90 |
+
x1 = self.dwc(x1)
|
91 |
+
return x1 * x2
|
92 |
+
|
93 |
+
class SpaBlock(nn.Module):
|
94 |
+
def __init__(self, nc, DW_Expand = 2, FFN_Expand=2, drop_out_rate=0.):
|
95 |
+
super(SpaBlock, self).__init__()
|
96 |
+
dw_channel = nc * DW_Expand
|
97 |
+
self.conv1 = nn.Conv2d(in_channels=nc, out_channels=dw_channel, kernel_size=1, padding=0, stride=1, groups=1, bias=True)
|
98 |
+
self.conv2 = nn.Conv2d(in_channels=dw_channel, out_channels=dw_channel, kernel_size=3, padding=1, stride=1, groups=dw_channel,
|
99 |
+
bias=True) # the dconv
|
100 |
+
self.conv3 = nn.Conv2d(in_channels=dw_channel // 2, out_channels=nc, kernel_size=1, padding=0, stride=1, groups=1, bias=True)
|
101 |
+
|
102 |
+
# Simplified Channel Attention
|
103 |
+
self.sca = nn.Sequential(
|
104 |
+
nn.AdaptiveAvgPool2d(1),
|
105 |
+
nn.Conv2d(in_channels=dw_channel // 2, out_channels=dw_channel // 2, kernel_size=1, padding=0, stride=1,
|
106 |
+
groups=1, bias=True),
|
107 |
+
)
|
108 |
+
|
109 |
+
# SimpleGate
|
110 |
+
self.sg = SimpleGate()
|
111 |
+
|
112 |
+
ffn_channel = FFN_Expand * nc
|
113 |
+
self.conv4 = nn.Conv2d(in_channels=nc, out_channels=ffn_channel, kernel_size=1, padding=0, stride=1, groups=1, bias=True)
|
114 |
+
self.conv5 = nn.Conv2d(in_channels=ffn_channel // 2, out_channels=nc, kernel_size=1, padding=0, stride=1, groups=1, bias=True)
|
115 |
+
|
116 |
+
self.norm1 = LayerNorm2d(nc)
|
117 |
+
self.norm2 = LayerNorm2d(nc)
|
118 |
+
|
119 |
+
self.dropout1 = nn.Dropout(drop_out_rate) if drop_out_rate > 0. else nn.Identity()
|
120 |
+
self.dropout2 = nn.Dropout(drop_out_rate) if drop_out_rate > 0. else nn.Identity()
|
121 |
+
|
122 |
+
self.beta = nn.Parameter(torch.zeros((1, nc, 1, 1)), requires_grad=True)
|
123 |
+
self.gamma = nn.Parameter(torch.zeros((1, nc, 1, 1)), requires_grad=True)
|
124 |
+
|
125 |
+
def forward(self, x):
|
126 |
+
|
127 |
+
x = self.norm1(x) # size [B, C, H, W]
|
128 |
+
|
129 |
+
x = self.conv1(x) # size [B, 2*C, H, W]
|
130 |
+
x = self.conv2(x) # size [B, 2*C, H, W]
|
131 |
+
x = self.sg(x) # size [B, C, H, W]
|
132 |
+
x = x * self.sca(x) # size [B, C, H, W]
|
133 |
+
x = self.conv3(x) # size [B, C, H, W]
|
134 |
+
|
135 |
+
x = self.dropout1(x)
|
136 |
+
|
137 |
+
y = x + x * self.beta # size [B, C, H, W]
|
138 |
+
|
139 |
+
x = self.conv4(self.norm2(y)) # size [B, 2*C, H, W]
|
140 |
+
x = self.sg(x) # size [B, C, H, W]
|
141 |
+
x = self.conv5(x) # size [B, C, H, W]
|
142 |
+
|
143 |
+
x = self.dropout2(x)
|
144 |
+
|
145 |
+
return y + x * self.gamma
|
146 |
+
|
147 |
+
class FreBlock(nn.Module):
|
148 |
+
def __init__(self, nc):
|
149 |
+
super(FreBlock, self).__init__()
|
150 |
+
self.fpre = nn.Conv2d(nc, nc, 1, 1, 0)
|
151 |
+
self.process1 = nn.Sequential(
|
152 |
+
nn.Conv2d(nc, nc, 1, 1, 0),
|
153 |
+
nn.LeakyReLU(0.1, inplace=True),
|
154 |
+
nn.Conv2d(nc, nc, 1, 1, 0))
|
155 |
+
self.process2 = nn.Sequential(
|
156 |
+
nn.Conv2d(nc, nc, 1, 1, 0),
|
157 |
+
nn.LeakyReLU(0.1, inplace=True),
|
158 |
+
nn.Conv2d(nc, nc, 1, 1, 0))
|
159 |
+
|
160 |
+
def forward(self, x):
|
161 |
+
_, _, H, W = x.shape
|
162 |
+
x_freq = torch.fft.rfft2(self.fpre(x), norm='backward')
|
163 |
+
mag = torch.abs(x_freq)
|
164 |
+
pha = torch.angle(x_freq)
|
165 |
+
mag = self.process1(mag)
|
166 |
+
pha = self.process2(pha)
|
167 |
+
real = mag * torch.cos(pha)
|
168 |
+
imag = mag * torch.sin(pha)
|
169 |
+
x_out = torch.complex(real, imag)
|
170 |
+
x_out = torch.fft.irfft2(x_out, s=(H, W), norm='backward')
|
171 |
+
|
172 |
+
return x_out+x
|
173 |
+
|
174 |
+
|
175 |
+
class SFBlock(nn.Module):
|
176 |
+
def __init__(self, nc, DW_Expand = 2, FFN_Expand=2):
|
177 |
+
super(SFBlock, self).__init__()
|
178 |
+
dw_channel = nc * DW_Expand
|
179 |
+
self.conv1 = nn.Conv2d(in_channels=nc, out_channels=dw_channel, kernel_size=1, padding=0, stride=1, groups=1, bias=True)
|
180 |
+
self.conv2 = nn.Conv2d(in_channels=dw_channel, out_channels=dw_channel, kernel_size=3, padding=1, stride=1, groups=dw_channel,
|
181 |
+
bias=True) # the dconv
|
182 |
+
self.conv3 = nn.Conv2d(in_channels=dw_channel // 2, out_channels=nc, kernel_size=1, padding=0, stride=1, groups=1, bias=True)
|
183 |
+
|
184 |
+
self.fatt = FreBlock(dw_channel // 2)
|
185 |
+
self.sge = SGE(dw_channel)
|
186 |
+
|
187 |
+
# SimpleGate
|
188 |
+
self.sg = SimpleGate()
|
189 |
+
|
190 |
+
ffn_channel = FFN_Expand * nc
|
191 |
+
self.conv4 = nn.Conv2d(in_channels=nc, out_channels=ffn_channel, kernel_size=1, padding=0, stride=1, groups=1, bias=True)
|
192 |
+
self.conv5 = nn.Conv2d(in_channels=ffn_channel // 2, out_channels=nc, kernel_size=1, padding=0, stride=1, groups=1, bias=True)
|
193 |
+
|
194 |
+
self.norm1 = LayerNorm2d(nc)
|
195 |
+
self.norm2 = LayerNorm2d(nc)
|
196 |
+
|
197 |
+
self.beta = nn.Parameter(torch.zeros((1, nc, 1, 1)), requires_grad=True)
|
198 |
+
self.gamma = nn.Parameter(torch.zeros((1, nc, 1, 1)), requires_grad=True)
|
199 |
+
|
200 |
+
def forward(self, x):
|
201 |
+
|
202 |
+
x = self.norm1(x) # size [B, C, H, W]
|
203 |
+
|
204 |
+
x = self.conv1(x) # size [B, 2*C, H, W]
|
205 |
+
x = self.conv2(x) # size [B, 2*C, H, W]
|
206 |
+
x = self.sge(x) # size [B, C, H, W]
|
207 |
+
|
208 |
+
x = self.fatt(x)
|
209 |
+
x = self.conv3(x) # size [B, C, H, W]
|
210 |
+
|
211 |
+
y = x + x * self.beta # size [B, C, H, W]
|
212 |
+
|
213 |
+
x = self.conv4(self.norm2(y)) # size [B, 2*C, H, W]
|
214 |
+
x = self.sg(x) # size [B, C, H, W]
|
215 |
+
x = self.conv5(x) # size [B, C, H, W]
|
216 |
+
|
217 |
+
return y + x * self.gamma
|
218 |
+
|
219 |
+
class ProcessBlock(nn.Module):
|
220 |
+
def __init__(self, in_nc, spatial = True):
|
221 |
+
super(ProcessBlock,self).__init__()
|
222 |
+
self.spatial = spatial
|
223 |
+
self.spatial_process = SpaBlock(in_nc) if spatial else nn.Identity()
|
224 |
+
self.frequency_process = FreBlock(in_nc)
|
225 |
+
self.cat = nn.Conv2d(2*in_nc,in_nc,1,1,0) if spatial else nn.Conv2d(in_nc,in_nc,1,1,0)
|
226 |
+
|
227 |
+
def forward(self, x):
|
228 |
+
xori = x
|
229 |
+
x_freq = self.frequency_process(x)
|
230 |
+
x_spatial = self.spatial_process(x)
|
231 |
+
xcat = torch.cat([x_spatial,x_freq],1)
|
232 |
+
x_out = self.cat(xcat) if self.spatial else self.cat(x_freq)
|
233 |
+
|
234 |
+
return x_out+xori
|
235 |
+
|
236 |
+
class SFNet(nn.Module):
|
237 |
+
|
238 |
+
def __init__(self, nc,n=5):
|
239 |
+
super(SFNet,self).__init__()
|
240 |
+
|
241 |
+
self.list_block = list()
|
242 |
+
for index in range(n):
|
243 |
+
|
244 |
+
self.list_block.append(ProcessBlock(nc,spatial=False))
|
245 |
+
|
246 |
+
self.block = nn.Sequential(*self.list_block)
|
247 |
+
|
248 |
+
def forward(self, x):
|
249 |
+
|
250 |
+
x_ori = x
|
251 |
+
x_out = self.block(x_ori)
|
252 |
+
xout = x_ori + x_out
|
253 |
+
|
254 |
+
return xout
|
255 |
+
|
256 |
+
class AmplitudeNet_skip(nn.Module):
|
257 |
+
def __init__(self, nc,n=1):
|
258 |
+
super(AmplitudeNet_skip,self).__init__()
|
259 |
+
|
260 |
+
self.conv_init = nn.Conv2d(3, nc, 1, 1, 0)
|
261 |
+
self.conv1 = SFBlock (nc)
|
262 |
+
self.conv2 = SFBlock (nc)
|
263 |
+
self.conv3 = SFBlock (nc)
|
264 |
+
self.conv_out = nn.Conv2d(nc, 3, 1, 1, 0)
|
265 |
+
|
266 |
+
def forward(self, x):
|
267 |
+
|
268 |
+
x_lr = F.interpolate(x, scale_factor=0.5, mode='bilinear') # Resize and Normalize SNR map
|
269 |
+
|
270 |
+
x_lr = self.conv_init(x_lr)
|
271 |
+
x_lr = self.conv1(x_lr)
|
272 |
+
x_lr = self.conv2(x_lr)
|
273 |
+
x_lr = self.conv3(x_lr)
|
274 |
+
x_lr = self.conv_out(x_lr)
|
275 |
+
|
276 |
+
xout = F.interpolate(x_lr, scale_factor=2, mode='bilinear') # Resize and Normalize SNR map
|
277 |
+
|
278 |
+
return xout
|
279 |
+
|
280 |
+
|
281 |
+
###########################################################################################################
|
282 |
+
|
283 |
+
class SG(nn.Module):
|
284 |
+
def forward(self, x):
|
285 |
+
x1, x2 = x.chunk(2, dim=1)
|
286 |
+
return x1 * x2
|
287 |
+
|
288 |
+
|
289 |
+
class SGE(nn.Module):
|
290 |
+
def __init__(self, dw_channel):
|
291 |
+
super().__init__()
|
292 |
+
self.dwc = nn.Conv2d(in_channels=dw_channel //2, out_channels=dw_channel//2, kernel_size=3, padding=1, stride=1, groups=dw_channel//2, bias=True)
|
293 |
+
def forward(self, x):
|
294 |
+
x1, x2 = x.chunk(2, dim=1)
|
295 |
+
x1 = self.dwc(x1)
|
296 |
+
return x1 * x2
|