Utils uploaded
Browse files- utils/arch_utils.py +309 -0
- utils/utils.py +296 -0
utils/arch_utils.py
ADDED
|
@@ -0,0 +1,309 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import math
|
| 2 |
+
import torch
|
| 3 |
+
|
| 4 |
+
from torch import nn as nn
|
| 5 |
+
from torch.nn import functional as F
|
| 6 |
+
from torch.nn import init as init
|
| 7 |
+
from torch.nn.modules.batchnorm import _BatchNorm
|
| 8 |
+
|
| 9 |
+
|
| 10 |
+
@torch.no_grad()
|
| 11 |
+
def default_init_weights(module_list, scale=1, bias_fill=0, **kwargs):
|
| 12 |
+
"""Initialize network weights.
|
| 13 |
+
|
| 14 |
+
Args:
|
| 15 |
+
module_list (list[nn.Module] | nn.Module): Modules to be initialized.
|
| 16 |
+
scale (float): Scale initialized weights, especially for residual
|
| 17 |
+
blocks. Default: 1.
|
| 18 |
+
bias_fill (float): The value to fill bias. Default: 0
|
| 19 |
+
kwargs (dict): Other arguments for initialization function.
|
| 20 |
+
"""
|
| 21 |
+
if not isinstance(module_list, list):
|
| 22 |
+
module_list = [module_list]
|
| 23 |
+
for module in module_list:
|
| 24 |
+
for m in module.modules():
|
| 25 |
+
if isinstance(m, nn.Conv2d):
|
| 26 |
+
init.kaiming_normal_(m.weight, **kwargs)
|
| 27 |
+
m.weight.data *= scale
|
| 28 |
+
if m.bias is not None:
|
| 29 |
+
m.bias.data.fill_(bias_fill)
|
| 30 |
+
elif isinstance(m, nn.Linear):
|
| 31 |
+
init.kaiming_normal_(m.weight, **kwargs)
|
| 32 |
+
m.weight.data *= scale
|
| 33 |
+
if m.bias is not None:
|
| 34 |
+
m.bias.data.fill_(bias_fill)
|
| 35 |
+
elif isinstance(m, _BatchNorm):
|
| 36 |
+
init.constant_(m.weight, 1)
|
| 37 |
+
if m.bias is not None:
|
| 38 |
+
m.bias.data.fill_(bias_fill)
|
| 39 |
+
|
| 40 |
+
|
| 41 |
+
def make_layer(basic_block, num_basic_block, **kwarg):
|
| 42 |
+
"""Make layers by stacking the same blocks.
|
| 43 |
+
|
| 44 |
+
Args:
|
| 45 |
+
basic_block (nn.module): nn.module class for basic block.
|
| 46 |
+
num_basic_block (int): number of blocks.
|
| 47 |
+
|
| 48 |
+
Returns:
|
| 49 |
+
nn.Sequential: Stacked blocks in nn.Sequential.
|
| 50 |
+
"""
|
| 51 |
+
layers = []
|
| 52 |
+
for _ in range(num_basic_block):
|
| 53 |
+
layers.append(basic_block(**kwarg))
|
| 54 |
+
return nn.Sequential(*layers)
|
| 55 |
+
|
| 56 |
+
|
| 57 |
+
class ResidualBlockNoBN(nn.Module):
|
| 58 |
+
"""Residual block without BN.
|
| 59 |
+
|
| 60 |
+
It has a style of:
|
| 61 |
+
---Conv-ReLU-Conv-+-
|
| 62 |
+
|________________|
|
| 63 |
+
|
| 64 |
+
Args:
|
| 65 |
+
num_feat (int): Channel number of intermediate features.
|
| 66 |
+
Default: 64.
|
| 67 |
+
res_scale (float): Residual scale. Default: 1.
|
| 68 |
+
pytorch_init (bool): If set to True, use pytorch default init,
|
| 69 |
+
otherwise, use default_init_weights. Default: False.
|
| 70 |
+
"""
|
| 71 |
+
|
| 72 |
+
def __init__(self, num_feat=64, res_scale=1, pytorch_init=False):
|
| 73 |
+
super(ResidualBlockNoBN, self).__init__()
|
| 74 |
+
self.res_scale = res_scale
|
| 75 |
+
self.conv1 = nn.Conv2d(num_feat, num_feat, 3, 1, 1, bias=True)
|
| 76 |
+
self.conv2 = nn.Conv2d(num_feat, num_feat, 3, 1, 1, bias=True)
|
| 77 |
+
self.relu = nn.ReLU(inplace=True)
|
| 78 |
+
|
| 79 |
+
if not pytorch_init:
|
| 80 |
+
default_init_weights([self.conv1, self.conv2], 0.1)
|
| 81 |
+
|
| 82 |
+
def forward(self, x):
|
| 83 |
+
identity = x
|
| 84 |
+
out = self.conv2(self.relu(self.conv1(x)))
|
| 85 |
+
return identity + out * self.res_scale
|
| 86 |
+
|
| 87 |
+
|
| 88 |
+
class Upsample(nn.Sequential):
|
| 89 |
+
"""Upsample module.
|
| 90 |
+
|
| 91 |
+
Args:
|
| 92 |
+
scale (int): Scale factor. Supported scales: 2^n and 3.
|
| 93 |
+
num_feat (int): Channel number of intermediate features.
|
| 94 |
+
"""
|
| 95 |
+
|
| 96 |
+
def __init__(self, scale, num_feat):
|
| 97 |
+
m = []
|
| 98 |
+
if (scale & (scale - 1)) == 0: # scale = 2^n
|
| 99 |
+
for _ in range(int(math.log(scale, 2))):
|
| 100 |
+
m.append(nn.Conv2d(num_feat, 4 * num_feat, 3, 1, 1))
|
| 101 |
+
m.append(nn.PixelShuffle(2))
|
| 102 |
+
elif scale == 3:
|
| 103 |
+
m.append(nn.Conv2d(num_feat, 9 * num_feat, 3, 1, 1))
|
| 104 |
+
m.append(nn.PixelShuffle(3))
|
| 105 |
+
else:
|
| 106 |
+
raise ValueError(f'scale {scale} is not supported. '
|
| 107 |
+
'Supported scales: 2^n and 3.')
|
| 108 |
+
super(Upsample, self).__init__(*m)
|
| 109 |
+
|
| 110 |
+
|
| 111 |
+
def flow_warp(x,
|
| 112 |
+
flow,
|
| 113 |
+
interp_mode='bilinear',
|
| 114 |
+
padding_mode='zeros',
|
| 115 |
+
align_corners=True):
|
| 116 |
+
"""Warp an image or feature map with optical flow.
|
| 117 |
+
|
| 118 |
+
Args:
|
| 119 |
+
x (Tensor): Tensor with size (n, c, h, w).
|
| 120 |
+
flow (Tensor): Tensor with size (n, h, w, 2), normal value.
|
| 121 |
+
interp_mode (str): 'nearest' or 'bilinear'. Default: 'bilinear'.
|
| 122 |
+
padding_mode (str): 'zeros' or 'border' or 'reflection'.
|
| 123 |
+
Default: 'zeros'.
|
| 124 |
+
align_corners (bool): Before pytorch 1.3, the default value is
|
| 125 |
+
align_corners=True. After pytorch 1.3, the default value is
|
| 126 |
+
align_corners=False. Here, we use the True as default.
|
| 127 |
+
|
| 128 |
+
Returns:
|
| 129 |
+
Tensor: Warped image or feature map.
|
| 130 |
+
"""
|
| 131 |
+
assert x.size()[-2:] == flow.size()[1:3]
|
| 132 |
+
_, _, h, w = x.size()
|
| 133 |
+
# create mesh grid
|
| 134 |
+
grid_y, grid_x = torch.meshgrid(
|
| 135 |
+
torch.arange(0, h).type_as(x),
|
| 136 |
+
torch.arange(0, w).type_as(x))
|
| 137 |
+
grid = torch.stack((grid_x, grid_y), 2).float() # W(x), H(y), 2
|
| 138 |
+
grid.requires_grad = False
|
| 139 |
+
|
| 140 |
+
vgrid = grid + flow
|
| 141 |
+
# scale grid to [-1,1]
|
| 142 |
+
vgrid_x = 2.0 * vgrid[:, :, :, 0] / max(w - 1, 1) - 1.0
|
| 143 |
+
vgrid_y = 2.0 * vgrid[:, :, :, 1] / max(h - 1, 1) - 1.0
|
| 144 |
+
vgrid_scaled = torch.stack((vgrid_x, vgrid_y), dim=3)
|
| 145 |
+
output = F.grid_sample(
|
| 146 |
+
x,
|
| 147 |
+
vgrid_scaled,
|
| 148 |
+
mode=interp_mode,
|
| 149 |
+
padding_mode=padding_mode,
|
| 150 |
+
align_corners=align_corners)
|
| 151 |
+
|
| 152 |
+
# TODO, what if align_corners=False
|
| 153 |
+
return output
|
| 154 |
+
|
| 155 |
+
|
| 156 |
+
def resize_flow(flow,
|
| 157 |
+
size_type,
|
| 158 |
+
sizes,
|
| 159 |
+
interp_mode='bilinear',
|
| 160 |
+
align_corners=False):
|
| 161 |
+
"""Resize a flow according to ratio or shape.
|
| 162 |
+
|
| 163 |
+
Args:
|
| 164 |
+
flow (Tensor): Precomputed flow. shape [N, 2, H, W].
|
| 165 |
+
size_type (str): 'ratio' or 'shape'.
|
| 166 |
+
sizes (list[int | float]): the ratio for resizing or the final output
|
| 167 |
+
shape.
|
| 168 |
+
1) The order of ratio should be [ratio_h, ratio_w]. For
|
| 169 |
+
downsampling, the ratio should be smaller than 1.0 (i.e., ratio
|
| 170 |
+
< 1.0). For upsampling, the ratio should be larger than 1.0 (i.e.,
|
| 171 |
+
ratio > 1.0).
|
| 172 |
+
2) The order of output_size should be [out_h, out_w].
|
| 173 |
+
interp_mode (str): The mode of interpolation for resizing.
|
| 174 |
+
Default: 'bilinear'.
|
| 175 |
+
align_corners (bool): Whether align corners. Default: False.
|
| 176 |
+
|
| 177 |
+
Returns:
|
| 178 |
+
Tensor: Resized flow.
|
| 179 |
+
"""
|
| 180 |
+
_, _, flow_h, flow_w = flow.size()
|
| 181 |
+
if size_type == 'ratio':
|
| 182 |
+
output_h, output_w = int(flow_h * sizes[0]), int(flow_w * sizes[1])
|
| 183 |
+
elif size_type == 'shape':
|
| 184 |
+
output_h, output_w = sizes[0], sizes[1]
|
| 185 |
+
else:
|
| 186 |
+
raise ValueError(
|
| 187 |
+
f'Size type should be ratio or shape, but got type {size_type}.')
|
| 188 |
+
|
| 189 |
+
input_flow = flow.clone()
|
| 190 |
+
ratio_h = output_h / flow_h
|
| 191 |
+
ratio_w = output_w / flow_w
|
| 192 |
+
input_flow[:, 0, :, :] *= ratio_w
|
| 193 |
+
input_flow[:, 1, :, :] *= ratio_h
|
| 194 |
+
resized_flow = F.interpolate(
|
| 195 |
+
input=input_flow,
|
| 196 |
+
size=(output_h, output_w),
|
| 197 |
+
mode=interp_mode,
|
| 198 |
+
align_corners=align_corners)
|
| 199 |
+
return resized_flow
|
| 200 |
+
|
| 201 |
+
|
| 202 |
+
# TODO: may write a cpp file
|
| 203 |
+
def pixel_unshuffle(x, scale):
|
| 204 |
+
""" Pixel unshuffle.
|
| 205 |
+
|
| 206 |
+
Args:
|
| 207 |
+
x (Tensor): Input feature with shape (b, c, hh, hw).
|
| 208 |
+
scale (int): Downsample ratio.
|
| 209 |
+
|
| 210 |
+
Returns:
|
| 211 |
+
Tensor: the pixel unshuffled feature.
|
| 212 |
+
"""
|
| 213 |
+
b, c, hh, hw = x.size()
|
| 214 |
+
out_channel = c * (scale**2)
|
| 215 |
+
assert hh % scale == 0 and hw % scale == 0
|
| 216 |
+
h = hh // scale
|
| 217 |
+
w = hw // scale
|
| 218 |
+
x_view = x.view(b, c, h, scale, w, scale)
|
| 219 |
+
return x_view.permute(0, 1, 3, 5, 2, 4).reshape(b, out_channel, h, w)
|
| 220 |
+
|
| 221 |
+
|
| 222 |
+
|
| 223 |
+
class LayerNormFunction(torch.autograd.Function):
|
| 224 |
+
|
| 225 |
+
@staticmethod
|
| 226 |
+
def forward(ctx, x, weight, bias, eps):
|
| 227 |
+
ctx.eps = eps
|
| 228 |
+
N, C, H, W = x.size()
|
| 229 |
+
mu = x.mean(1, keepdim=True)
|
| 230 |
+
var = (x - mu).pow(2).mean(1, keepdim=True)
|
| 231 |
+
y = (x - mu) / (var + eps).sqrt()
|
| 232 |
+
ctx.save_for_backward(y, var, weight)
|
| 233 |
+
y = weight.view(1, C, 1, 1) * y + bias.view(1, C, 1, 1)
|
| 234 |
+
return y
|
| 235 |
+
|
| 236 |
+
@staticmethod
|
| 237 |
+
def backward(ctx, grad_output):
|
| 238 |
+
eps = ctx.eps
|
| 239 |
+
|
| 240 |
+
N, C, H, W = grad_output.size()
|
| 241 |
+
y, var, weight = ctx.saved_variables
|
| 242 |
+
g = grad_output * weight.view(1, C, 1, 1)
|
| 243 |
+
mean_g = g.mean(dim=1, keepdim=True)
|
| 244 |
+
|
| 245 |
+
mean_gy = (g * y).mean(dim=1, keepdim=True)
|
| 246 |
+
gx = 1. / torch.sqrt(var + eps) * (g - y * mean_gy - mean_g)
|
| 247 |
+
return gx, (grad_output * y).sum(dim=3).sum(dim=2).sum(dim=0), grad_output.sum(dim=3).sum(dim=2).sum(
|
| 248 |
+
dim=0), None
|
| 249 |
+
|
| 250 |
+
class LayerNorm2d(nn.Module):
|
| 251 |
+
|
| 252 |
+
def __init__(self, channels, eps=1e-6):
|
| 253 |
+
super(LayerNorm2d, self).__init__()
|
| 254 |
+
self.register_parameter('weight', nn.Parameter(torch.ones(channels)))
|
| 255 |
+
self.register_parameter('bias', nn.Parameter(torch.zeros(channels)))
|
| 256 |
+
self.eps = eps
|
| 257 |
+
|
| 258 |
+
def forward(self, x):
|
| 259 |
+
return LayerNormFunction.apply(x, self.weight, self.bias, self.eps)
|
| 260 |
+
|
| 261 |
+
# handle multiple input
|
| 262 |
+
class MySequential(nn.Sequential):
|
| 263 |
+
def forward(self, *inputs):
|
| 264 |
+
for module in self._modules.values():
|
| 265 |
+
if type(inputs) == tuple:
|
| 266 |
+
inputs = module(*inputs)
|
| 267 |
+
else:
|
| 268 |
+
inputs = module(inputs)
|
| 269 |
+
return inputs
|
| 270 |
+
|
| 271 |
+
import time
|
| 272 |
+
def measure_inference_speed(model, data, max_iter=200, log_interval=50):
|
| 273 |
+
model.eval()
|
| 274 |
+
|
| 275 |
+
# the first several iterations may be very slow so skip them
|
| 276 |
+
num_warmup = 5
|
| 277 |
+
pure_inf_time = 0
|
| 278 |
+
fps = 0
|
| 279 |
+
|
| 280 |
+
# benchmark with 2000 image and take the average
|
| 281 |
+
for i in range(max_iter):
|
| 282 |
+
|
| 283 |
+
torch.cuda.synchronize()
|
| 284 |
+
start_time = time.perf_counter()
|
| 285 |
+
|
| 286 |
+
with torch.no_grad():
|
| 287 |
+
model(*data)
|
| 288 |
+
|
| 289 |
+
torch.cuda.synchronize()
|
| 290 |
+
elapsed = time.perf_counter() - start_time
|
| 291 |
+
|
| 292 |
+
if i >= num_warmup:
|
| 293 |
+
pure_inf_time += elapsed
|
| 294 |
+
if (i + 1) % log_interval == 0:
|
| 295 |
+
fps = (i + 1 - num_warmup) / pure_inf_time
|
| 296 |
+
print(
|
| 297 |
+
f'Done image [{i + 1:<3}/ {max_iter}], '
|
| 298 |
+
f'fps: {fps:.1f} img / s, '
|
| 299 |
+
f'times per image: {1000 / fps:.1f} ms / img',
|
| 300 |
+
flush=True)
|
| 301 |
+
|
| 302 |
+
if (i + 1) == max_iter:
|
| 303 |
+
fps = (i + 1 - num_warmup) / pure_inf_time
|
| 304 |
+
print(
|
| 305 |
+
f'Overall fps: {fps:.1f} img / s, '
|
| 306 |
+
f'times per image: {1000 / fps:.1f} ms / img',
|
| 307 |
+
flush=True)
|
| 308 |
+
break
|
| 309 |
+
return fps
|
utils/utils.py
ADDED
|
@@ -0,0 +1,296 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import torch
|
| 2 |
+
import torch.nn as nn
|
| 3 |
+
import torch.nn.functional as F
|
| 4 |
+
import torch.nn.init as init
|
| 5 |
+
|
| 6 |
+
from utils.arch_utils import LayerNorm2d
|
| 7 |
+
|
| 8 |
+
def initialize_weights(net_l, scale=1):
|
| 9 |
+
if not isinstance(net_l, list):
|
| 10 |
+
net_l = [net_l]
|
| 11 |
+
for net in net_l:
|
| 12 |
+
for m in net.modules():
|
| 13 |
+
if isinstance(m, nn.Conv2d):
|
| 14 |
+
init.kaiming_normal_(m.weight, a=0, mode='fan_in')
|
| 15 |
+
m.weight.data *= scale # for residual block
|
| 16 |
+
if m.bias is not None:
|
| 17 |
+
m.bias.data.zero_()
|
| 18 |
+
elif isinstance(m, nn.Linear):
|
| 19 |
+
init.kaiming_normal_(m.weight, a=0, mode='fan_in')
|
| 20 |
+
m.weight.data *= scale
|
| 21 |
+
if m.bias is not None:
|
| 22 |
+
m.bias.data.zero_()
|
| 23 |
+
elif isinstance(m, nn.BatchNorm2d):
|
| 24 |
+
init.constant_(m.weight, 1)
|
| 25 |
+
init.constant_(m.bias.data, 0.0)
|
| 26 |
+
|
| 27 |
+
|
| 28 |
+
def make_layer(block, n_layers):
|
| 29 |
+
layers = []
|
| 30 |
+
for _ in range(n_layers):
|
| 31 |
+
layers.append(block())
|
| 32 |
+
return nn.Sequential(*layers)
|
| 33 |
+
|
| 34 |
+
|
| 35 |
+
class ResidualBlock_noBN(nn.Module):
|
| 36 |
+
'''Residual block w/o BN
|
| 37 |
+
---Conv-ReLU-Conv-+-
|
| 38 |
+
|________________|
|
| 39 |
+
'''
|
| 40 |
+
|
| 41 |
+
def __init__(self, nf=64):
|
| 42 |
+
super(ResidualBlock_noBN, self).__init__()
|
| 43 |
+
self.conv1 = nn.Conv2d(nf, nf, 3, 1, 1, bias=True)
|
| 44 |
+
self.conv2 = nn.Conv2d(nf, nf, 3, 1, 1, bias=True)
|
| 45 |
+
|
| 46 |
+
# initialization
|
| 47 |
+
initialize_weights([self.conv1, self.conv2], 0.1)
|
| 48 |
+
|
| 49 |
+
def forward(self, x):
|
| 50 |
+
identity = x
|
| 51 |
+
out = F.relu(self.conv1(x), inplace=True)
|
| 52 |
+
out = self.conv2(out)
|
| 53 |
+
return identity + out
|
| 54 |
+
|
| 55 |
+
class ResidualBlock(nn.Module):
|
| 56 |
+
'''Residual block w/o BN
|
| 57 |
+
---Conv-ReLU-Conv-+-
|
| 58 |
+
|________________|
|
| 59 |
+
'''
|
| 60 |
+
|
| 61 |
+
def __init__(self, nf=64):
|
| 62 |
+
super(ResidualBlock, self).__init__()
|
| 63 |
+
self.conv1 = nn.Conv2d(nf, nf, 3, 1, 1, bias=True)
|
| 64 |
+
self.bn = nn.BatchNorm2d(nf)
|
| 65 |
+
self.conv2 = nn.Conv2d(nf, nf, 3, 1, 1, bias=True)
|
| 66 |
+
|
| 67 |
+
# initialization
|
| 68 |
+
initialize_weights([self.conv1, self.conv2], 0.1)
|
| 69 |
+
|
| 70 |
+
def forward(self, x):
|
| 71 |
+
identity = x
|
| 72 |
+
out = F.relu(self.bn(self.conv1(x)), inplace=True)
|
| 73 |
+
out = self.conv2(out)
|
| 74 |
+
return identity + out
|
| 75 |
+
|
| 76 |
+
###########################################################################################################
|
| 77 |
+
|
| 78 |
+
|
| 79 |
+
class SimpleGate(nn.Module):
|
| 80 |
+
def forward(self, x):
|
| 81 |
+
x1, x2 = x.chunk(2, dim=1)
|
| 82 |
+
return x1 * x2
|
| 83 |
+
|
| 84 |
+
class SGE(nn.Module):
|
| 85 |
+
def __init__(self, dw_channel):
|
| 86 |
+
super().__init__()
|
| 87 |
+
self.dwc = nn.Conv2d(in_channels=dw_channel //2, out_channels=dw_channel//2, kernel_size=3, padding=1, stride=1, groups=dw_channel//2, bias=True)
|
| 88 |
+
def forward(self, x):
|
| 89 |
+
x1, x2 = x.chunk(2, dim=1)
|
| 90 |
+
x1 = self.dwc(x1)
|
| 91 |
+
return x1 * x2
|
| 92 |
+
|
| 93 |
+
class SpaBlock(nn.Module):
|
| 94 |
+
def __init__(self, nc, DW_Expand = 2, FFN_Expand=2, drop_out_rate=0.):
|
| 95 |
+
super(SpaBlock, self).__init__()
|
| 96 |
+
dw_channel = nc * DW_Expand
|
| 97 |
+
self.conv1 = nn.Conv2d(in_channels=nc, out_channels=dw_channel, kernel_size=1, padding=0, stride=1, groups=1, bias=True)
|
| 98 |
+
self.conv2 = nn.Conv2d(in_channels=dw_channel, out_channels=dw_channel, kernel_size=3, padding=1, stride=1, groups=dw_channel,
|
| 99 |
+
bias=True) # the dconv
|
| 100 |
+
self.conv3 = nn.Conv2d(in_channels=dw_channel // 2, out_channels=nc, kernel_size=1, padding=0, stride=1, groups=1, bias=True)
|
| 101 |
+
|
| 102 |
+
# Simplified Channel Attention
|
| 103 |
+
self.sca = nn.Sequential(
|
| 104 |
+
nn.AdaptiveAvgPool2d(1),
|
| 105 |
+
nn.Conv2d(in_channels=dw_channel // 2, out_channels=dw_channel // 2, kernel_size=1, padding=0, stride=1,
|
| 106 |
+
groups=1, bias=True),
|
| 107 |
+
)
|
| 108 |
+
|
| 109 |
+
# SimpleGate
|
| 110 |
+
self.sg = SimpleGate()
|
| 111 |
+
|
| 112 |
+
ffn_channel = FFN_Expand * nc
|
| 113 |
+
self.conv4 = nn.Conv2d(in_channels=nc, out_channels=ffn_channel, kernel_size=1, padding=0, stride=1, groups=1, bias=True)
|
| 114 |
+
self.conv5 = nn.Conv2d(in_channels=ffn_channel // 2, out_channels=nc, kernel_size=1, padding=0, stride=1, groups=1, bias=True)
|
| 115 |
+
|
| 116 |
+
self.norm1 = LayerNorm2d(nc)
|
| 117 |
+
self.norm2 = LayerNorm2d(nc)
|
| 118 |
+
|
| 119 |
+
self.dropout1 = nn.Dropout(drop_out_rate) if drop_out_rate > 0. else nn.Identity()
|
| 120 |
+
self.dropout2 = nn.Dropout(drop_out_rate) if drop_out_rate > 0. else nn.Identity()
|
| 121 |
+
|
| 122 |
+
self.beta = nn.Parameter(torch.zeros((1, nc, 1, 1)), requires_grad=True)
|
| 123 |
+
self.gamma = nn.Parameter(torch.zeros((1, nc, 1, 1)), requires_grad=True)
|
| 124 |
+
|
| 125 |
+
def forward(self, x):
|
| 126 |
+
|
| 127 |
+
x = self.norm1(x) # size [B, C, H, W]
|
| 128 |
+
|
| 129 |
+
x = self.conv1(x) # size [B, 2*C, H, W]
|
| 130 |
+
x = self.conv2(x) # size [B, 2*C, H, W]
|
| 131 |
+
x = self.sg(x) # size [B, C, H, W]
|
| 132 |
+
x = x * self.sca(x) # size [B, C, H, W]
|
| 133 |
+
x = self.conv3(x) # size [B, C, H, W]
|
| 134 |
+
|
| 135 |
+
x = self.dropout1(x)
|
| 136 |
+
|
| 137 |
+
y = x + x * self.beta # size [B, C, H, W]
|
| 138 |
+
|
| 139 |
+
x = self.conv4(self.norm2(y)) # size [B, 2*C, H, W]
|
| 140 |
+
x = self.sg(x) # size [B, C, H, W]
|
| 141 |
+
x = self.conv5(x) # size [B, C, H, W]
|
| 142 |
+
|
| 143 |
+
x = self.dropout2(x)
|
| 144 |
+
|
| 145 |
+
return y + x * self.gamma
|
| 146 |
+
|
| 147 |
+
class FreBlock(nn.Module):
|
| 148 |
+
def __init__(self, nc):
|
| 149 |
+
super(FreBlock, self).__init__()
|
| 150 |
+
self.fpre = nn.Conv2d(nc, nc, 1, 1, 0)
|
| 151 |
+
self.process1 = nn.Sequential(
|
| 152 |
+
nn.Conv2d(nc, nc, 1, 1, 0),
|
| 153 |
+
nn.LeakyReLU(0.1, inplace=True),
|
| 154 |
+
nn.Conv2d(nc, nc, 1, 1, 0))
|
| 155 |
+
self.process2 = nn.Sequential(
|
| 156 |
+
nn.Conv2d(nc, nc, 1, 1, 0),
|
| 157 |
+
nn.LeakyReLU(0.1, inplace=True),
|
| 158 |
+
nn.Conv2d(nc, nc, 1, 1, 0))
|
| 159 |
+
|
| 160 |
+
def forward(self, x):
|
| 161 |
+
_, _, H, W = x.shape
|
| 162 |
+
x_freq = torch.fft.rfft2(self.fpre(x), norm='backward')
|
| 163 |
+
mag = torch.abs(x_freq)
|
| 164 |
+
pha = torch.angle(x_freq)
|
| 165 |
+
mag = self.process1(mag)
|
| 166 |
+
pha = self.process2(pha)
|
| 167 |
+
real = mag * torch.cos(pha)
|
| 168 |
+
imag = mag * torch.sin(pha)
|
| 169 |
+
x_out = torch.complex(real, imag)
|
| 170 |
+
x_out = torch.fft.irfft2(x_out, s=(H, W), norm='backward')
|
| 171 |
+
|
| 172 |
+
return x_out+x
|
| 173 |
+
|
| 174 |
+
|
| 175 |
+
class SFBlock(nn.Module):
|
| 176 |
+
def __init__(self, nc, DW_Expand = 2, FFN_Expand=2):
|
| 177 |
+
super(SFBlock, self).__init__()
|
| 178 |
+
dw_channel = nc * DW_Expand
|
| 179 |
+
self.conv1 = nn.Conv2d(in_channels=nc, out_channels=dw_channel, kernel_size=1, padding=0, stride=1, groups=1, bias=True)
|
| 180 |
+
self.conv2 = nn.Conv2d(in_channels=dw_channel, out_channels=dw_channel, kernel_size=3, padding=1, stride=1, groups=dw_channel,
|
| 181 |
+
bias=True) # the dconv
|
| 182 |
+
self.conv3 = nn.Conv2d(in_channels=dw_channel // 2, out_channels=nc, kernel_size=1, padding=0, stride=1, groups=1, bias=True)
|
| 183 |
+
|
| 184 |
+
self.fatt = FreBlock(dw_channel // 2)
|
| 185 |
+
self.sge = SGE(dw_channel)
|
| 186 |
+
|
| 187 |
+
# SimpleGate
|
| 188 |
+
self.sg = SimpleGate()
|
| 189 |
+
|
| 190 |
+
ffn_channel = FFN_Expand * nc
|
| 191 |
+
self.conv4 = nn.Conv2d(in_channels=nc, out_channels=ffn_channel, kernel_size=1, padding=0, stride=1, groups=1, bias=True)
|
| 192 |
+
self.conv5 = nn.Conv2d(in_channels=ffn_channel // 2, out_channels=nc, kernel_size=1, padding=0, stride=1, groups=1, bias=True)
|
| 193 |
+
|
| 194 |
+
self.norm1 = LayerNorm2d(nc)
|
| 195 |
+
self.norm2 = LayerNorm2d(nc)
|
| 196 |
+
|
| 197 |
+
self.beta = nn.Parameter(torch.zeros((1, nc, 1, 1)), requires_grad=True)
|
| 198 |
+
self.gamma = nn.Parameter(torch.zeros((1, nc, 1, 1)), requires_grad=True)
|
| 199 |
+
|
| 200 |
+
def forward(self, x):
|
| 201 |
+
|
| 202 |
+
x = self.norm1(x) # size [B, C, H, W]
|
| 203 |
+
|
| 204 |
+
x = self.conv1(x) # size [B, 2*C, H, W]
|
| 205 |
+
x = self.conv2(x) # size [B, 2*C, H, W]
|
| 206 |
+
x = self.sge(x) # size [B, C, H, W]
|
| 207 |
+
|
| 208 |
+
x = self.fatt(x)
|
| 209 |
+
x = self.conv3(x) # size [B, C, H, W]
|
| 210 |
+
|
| 211 |
+
y = x + x * self.beta # size [B, C, H, W]
|
| 212 |
+
|
| 213 |
+
x = self.conv4(self.norm2(y)) # size [B, 2*C, H, W]
|
| 214 |
+
x = self.sg(x) # size [B, C, H, W]
|
| 215 |
+
x = self.conv5(x) # size [B, C, H, W]
|
| 216 |
+
|
| 217 |
+
return y + x * self.gamma
|
| 218 |
+
|
| 219 |
+
class ProcessBlock(nn.Module):
|
| 220 |
+
def __init__(self, in_nc, spatial = True):
|
| 221 |
+
super(ProcessBlock,self).__init__()
|
| 222 |
+
self.spatial = spatial
|
| 223 |
+
self.spatial_process = SpaBlock(in_nc) if spatial else nn.Identity()
|
| 224 |
+
self.frequency_process = FreBlock(in_nc)
|
| 225 |
+
self.cat = nn.Conv2d(2*in_nc,in_nc,1,1,0) if spatial else nn.Conv2d(in_nc,in_nc,1,1,0)
|
| 226 |
+
|
| 227 |
+
def forward(self, x):
|
| 228 |
+
xori = x
|
| 229 |
+
x_freq = self.frequency_process(x)
|
| 230 |
+
x_spatial = self.spatial_process(x)
|
| 231 |
+
xcat = torch.cat([x_spatial,x_freq],1)
|
| 232 |
+
x_out = self.cat(xcat) if self.spatial else self.cat(x_freq)
|
| 233 |
+
|
| 234 |
+
return x_out+xori
|
| 235 |
+
|
| 236 |
+
class SFNet(nn.Module):
|
| 237 |
+
|
| 238 |
+
def __init__(self, nc,n=5):
|
| 239 |
+
super(SFNet,self).__init__()
|
| 240 |
+
|
| 241 |
+
self.list_block = list()
|
| 242 |
+
for index in range(n):
|
| 243 |
+
|
| 244 |
+
self.list_block.append(ProcessBlock(nc,spatial=False))
|
| 245 |
+
|
| 246 |
+
self.block = nn.Sequential(*self.list_block)
|
| 247 |
+
|
| 248 |
+
def forward(self, x):
|
| 249 |
+
|
| 250 |
+
x_ori = x
|
| 251 |
+
x_out = self.block(x_ori)
|
| 252 |
+
xout = x_ori + x_out
|
| 253 |
+
|
| 254 |
+
return xout
|
| 255 |
+
|
| 256 |
+
class AmplitudeNet_skip(nn.Module):
|
| 257 |
+
def __init__(self, nc,n=1):
|
| 258 |
+
super(AmplitudeNet_skip,self).__init__()
|
| 259 |
+
|
| 260 |
+
self.conv_init = nn.Conv2d(3, nc, 1, 1, 0)
|
| 261 |
+
self.conv1 = SFBlock (nc)
|
| 262 |
+
self.conv2 = SFBlock (nc)
|
| 263 |
+
self.conv3 = SFBlock (nc)
|
| 264 |
+
self.conv_out = nn.Conv2d(nc, 3, 1, 1, 0)
|
| 265 |
+
|
| 266 |
+
def forward(self, x):
|
| 267 |
+
|
| 268 |
+
x_lr = F.interpolate(x, scale_factor=0.5, mode='bilinear') # Resize and Normalize SNR map
|
| 269 |
+
|
| 270 |
+
x_lr = self.conv_init(x_lr)
|
| 271 |
+
x_lr = self.conv1(x_lr)
|
| 272 |
+
x_lr = self.conv2(x_lr)
|
| 273 |
+
x_lr = self.conv3(x_lr)
|
| 274 |
+
x_lr = self.conv_out(x_lr)
|
| 275 |
+
|
| 276 |
+
xout = F.interpolate(x_lr, scale_factor=2, mode='bilinear') # Resize and Normalize SNR map
|
| 277 |
+
|
| 278 |
+
return xout
|
| 279 |
+
|
| 280 |
+
|
| 281 |
+
###########################################################################################################
|
| 282 |
+
|
| 283 |
+
class SG(nn.Module):
|
| 284 |
+
def forward(self, x):
|
| 285 |
+
x1, x2 = x.chunk(2, dim=1)
|
| 286 |
+
return x1 * x2
|
| 287 |
+
|
| 288 |
+
|
| 289 |
+
class SGE(nn.Module):
|
| 290 |
+
def __init__(self, dw_channel):
|
| 291 |
+
super().__init__()
|
| 292 |
+
self.dwc = nn.Conv2d(in_channels=dw_channel //2, out_channels=dw_channel//2, kernel_size=3, padding=1, stride=1, groups=dw_channel//2, bias=True)
|
| 293 |
+
def forward(self, x):
|
| 294 |
+
x1, x2 = x.chunk(2, dim=1)
|
| 295 |
+
x1 = self.dwc(x1)
|
| 296 |
+
return x1 * x2
|