|
import torch |
|
import torch.nn as nn |
|
import torch.nn.init as init |
|
import torch.nn.functional as F |
|
|
|
|
|
def initialize_weights(net_l, scale=1): |
|
if not isinstance(net_l, list): |
|
net_l = [net_l] |
|
for net in net_l: |
|
for m in net.modules(): |
|
if isinstance(m, nn.Conv2d): |
|
init.kaiming_normal_(m.weight, a=0, mode='fan_in') |
|
m.weight.data *= scale |
|
if m.bias is not None: |
|
m.bias.data.zero_() |
|
elif isinstance(m, nn.Linear): |
|
init.kaiming_normal_(m.weight, a=0, mode='fan_in') |
|
m.weight.data *= scale |
|
if m.bias is not None: |
|
m.bias.data.zero_() |
|
elif isinstance(m, nn.BatchNorm2d): |
|
init.constant_(m.weight, 1) |
|
init.constant_(m.bias.data, 0.0) |
|
|
|
|
|
def make_layer(block, n_layers): |
|
layers = [] |
|
for _ in range(n_layers): |
|
layers.append(block()) |
|
return nn.Sequential(*layers) |
|
|
|
|
|
class ResidualBlock_noBN(nn.Module): |
|
'''Residual block w/o BN |
|
---Conv-ReLU-Conv-+- |
|
|________________| |
|
''' |
|
|
|
def __init__(self, nf=64): |
|
super(ResidualBlock_noBN, self).__init__() |
|
self.conv1 = nn.Conv2d(nf, nf, 3, 1, 1, bias=True) |
|
self.conv2 = nn.Conv2d(nf, nf, 3, 1, 1, bias=True) |
|
|
|
|
|
initialize_weights([self.conv1, self.conv2], 0.1) |
|
|
|
def forward(self, x): |
|
identity = x |
|
out = F.relu(self.conv1(x), inplace=True) |
|
out = self.conv2(out) |
|
return identity + out |
|
|
|
class ResidualBlock(nn.Module): |
|
'''Residual block w/o BN |
|
---Conv-ReLU-Conv-+- |
|
|________________| |
|
''' |
|
|
|
def __init__(self, nf=64): |
|
super(ResidualBlock, self).__init__() |
|
self.conv1 = nn.Conv2d(nf, nf, 3, 1, 1, bias=True) |
|
self.bn = nn.BatchNorm2d(nf) |
|
self.conv2 = nn.Conv2d(nf, nf, 3, 1, 1, bias=True) |
|
|
|
|
|
initialize_weights([self.conv1, self.conv2], 0.1) |
|
|
|
def forward(self, x): |
|
identity = x |
|
out = F.relu(self.bn(self.conv1(x)), inplace=True) |
|
out = self.conv2(out) |
|
return identity + out |
|
|