|
import gradio as gr |
|
import torch |
|
import torchvision.transforms as transforms |
|
import numpy as np |
|
|
|
from PIL import Image |
|
from model.flol import create_model |
|
|
|
device = torch.device('cuda') if torch.cuda.is_available() else torch.device('cpu') |
|
|
|
pil_to_tensor = transforms.ToTensor() |
|
|
|
|
|
image_to_weights = { |
|
"425_UHD_LL.JPG": './weights/flolv2_UHDLL.pt', |
|
"1778_UHD_LL.JPG": './weights/flolv2_UHDLL.pt', |
|
"1791_UHD_LL.JPG": './weights/flolv2_UHDLL.pt', |
|
|
|
"low00748.png": './weights/flolv2_all_111439.pt', |
|
"low00723.png": './weights/flolv2_all_111439.pt', |
|
"low00772.png": './weights/flolv2_all_111439.pt' |
|
} |
|
|
|
|
|
model = create_model() |
|
|
|
def load_img(filename): |
|
img = Image.open(filename).convert("RGB") |
|
img_tensor = pil_to_tensor(img) |
|
return img_tensor |
|
|
|
def process_img(image, filename): |
|
|
|
if filename in image_to_weights: |
|
model_path = image_to_weights[filename] |
|
checkpoints = torch.load(model_path, map_location=device) |
|
model.load_state_dict(checkpoints['params']) |
|
model.to(device) |
|
|
|
img = np.array(image) |
|
img = img / 255. |
|
img = img.astype(np.float32) |
|
y = torch.tensor(img).permute(2, 0, 1).unsqueeze(0).to(device) |
|
|
|
with torch.no_grad(): |
|
x_hat = model(y) |
|
|
|
restored_img = x_hat.squeeze().permute(1, 2, 0).clamp_(0, 1).cpu().detach().numpy() |
|
restored_img = np.clip(restored_img, 0., 1.) |
|
|
|
restored_img = (restored_img * 255.0).round().astype(np.uint8) |
|
return Image.fromarray(restored_img) |
|
|
|
|
|
title = "Efficient Low-Light Enhancement ✏️🖼️ 🤗" |
|
description = ''' ## [Efficient Low-Light Enhancement](https://github.com/cidautai/NAFourNet) |
|
[Juan Carlos Benito](https://github.com/juaben) |
|
Fundación Cidaut |
|
> **Disclaimer:** please remember this is not a product, thus, you will notice some limitations. |
|
**This demo expects an image with some degradations.** |
|
Due to the GPU memory limitations, the app might crash if you feed a high-resolution image (2K, 4K). |
|
<br> |
|
''' |
|
|
|
examples = [['images/425_UHD_LL.JPG'], |
|
['images/low00772.png'], |
|
['images/low00723.png'], |
|
['images/low00748.png'], |
|
['images/1778_UHD_LL.JPG'], |
|
['images/1791_UHD_LL.JPG']] |
|
|
|
css = """ |
|
.image-frame img, .image-container img { |
|
width: auto; |
|
height: auto; |
|
max-width: none; |
|
} |
|
""" |
|
|
|
demo = gr.Interface( |
|
fn=process_img, |
|
inputs=[ |
|
gr.Image(type='pil', label='input', tool='editor'), |
|
gr.Textbox(label="Image Filename", interactive=False) |
|
], |
|
outputs=[gr.Image(type='pil', label='output')], |
|
title=title, |
|
description=description, |
|
examples=examples, |
|
css=css |
|
) |
|
|
|
|
|
def update_filename(image): |
|
|
|
if image: |
|
filename = image.filename |
|
return filename |
|
return "" |
|
|
|
|
|
demo.input_components[0].change(update_filename, inputs=demo.input_components[0], outputs=demo.input_components[1]) |
|
|
|
if __name__ == '__main__': |
|
demo.launch() |