File size: 5,820 Bytes
4fcebd2
 
 
 
 
7cc5832
e1b9be9
 
7cc5832
 
 
4fcebd2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
import torch
import torch.nn as nn
import torch.nn.functional as F

# Modules from model
try:
    from archs.arch_util import LayerNorm2d
    import archs.arch_util as arch_util
except:
    from arch_util import LayerNorm2d
    import arch_util as arch_util

# Process Block 4 en SFNet y 5 bloques en AmpNet, con el spatial block aplicado en AmpNet (frequency stage) 
# tal y como lo tienen ellos en su github (aunque en el paper es al revés) y no lo aplican el space stage


class SimpleGate(nn.Module):
    def forward(self, x):
        x1, x2 = x.chunk(2, dim=1)
        return x1 * x2

class SpaBlock(nn.Module):
    def __init__(self, nc, DW_Expand = 2,  FFN_Expand=2, drop_out_rate=0.):
        super(SpaBlock, self).__init__()
        dw_channel = nc * DW_Expand
        self.conv1 = nn.Conv2d(in_channels=nc, out_channels=dw_channel, kernel_size=1, padding=0, stride=1, groups=1, bias=True)
        self.conv2 = nn.Conv2d(in_channels=dw_channel, out_channels=dw_channel, kernel_size=3, padding=1, stride=1, groups=dw_channel,
                               bias=True) # the dconv
        self.conv3 = nn.Conv2d(in_channels=dw_channel // 2, out_channels=nc, kernel_size=1, padding=0, stride=1, groups=1, bias=True)
        
        # Simplified Channel Attention
        self.sca = nn.Sequential(
            nn.AdaptiveAvgPool2d(1),
            nn.Conv2d(in_channels=dw_channel // 2, out_channels=dw_channel // 2, kernel_size=1, padding=0, stride=1,
                      groups=1, bias=True),
        )

        # SimpleGate
        self.sg = SimpleGate()

        ffn_channel = FFN_Expand * nc
        self.conv4 = nn.Conv2d(in_channels=nc, out_channels=ffn_channel, kernel_size=1, padding=0, stride=1, groups=1, bias=True)
        self.conv5 = nn.Conv2d(in_channels=ffn_channel // 2, out_channels=nc, kernel_size=1, padding=0, stride=1, groups=1, bias=True)

        self.norm1 = LayerNorm2d(nc)
        self.norm2 = LayerNorm2d(nc)

        self.dropout1 = nn.Dropout(drop_out_rate) if drop_out_rate > 0. else nn.Identity()
        self.dropout2 = nn.Dropout(drop_out_rate) if drop_out_rate > 0. else nn.Identity()

        self.beta = nn.Parameter(torch.zeros((1, nc, 1, 1)), requires_grad=True)
        self.gamma = nn.Parameter(torch.zeros((1, nc, 1, 1)), requires_grad=True)

    def forward(self, x):

        x = self.norm1(x) # size [B, C, H, W]

        x = self.conv1(x) # size [B, 2*C, H, W]
        x = self.conv2(x) # size [B, 2*C, H, W]
        x = self.sg(x)    # size [B, C, H, W]
        x = x * self.sca(x) # size [B, C, H, W]
        x = self.conv3(x) # size [B, C, H, W]

        x = self.dropout1(x)

        y = x + x * self.beta # size [B, C, H, W]

        x = self.conv4(self.norm2(y)) # size [B, 2*C, H, W]
        x = self.sg(x)  # size [B, C, H, W]
        x = self.conv5(x) # size [B, C, H, W]

        x = self.dropout2(x)

        return y + x * self.gamma

class FreBlock(nn.Module):
    def __init__(self, nc):
        super(FreBlock, self).__init__()
        self.fpre = nn.Conv2d(nc, nc, 1, 1, 0)
        self.process1 = nn.Sequential(
            nn.Conv2d(nc, nc, 1, 1, 0),
            nn.LeakyReLU(0.1, inplace=True),
            nn.Conv2d(nc, nc, 1, 1, 0))
        self.process2 = nn.Sequential(
            nn.Conv2d(nc, nc, 1, 1, 0),
            nn.LeakyReLU(0.1, inplace=True),
            nn.Conv2d(nc, nc, 1, 1, 0))

    def forward(self, x):
        _, _, H, W = x.shape
        x_freq = torch.fft.rfft2(self.fpre(x), norm='backward')
        mag = torch.abs(x_freq)
        pha = torch.angle(x_freq)
        mag = self.process1(mag)
        pha = self.process2(pha)
        real = mag * torch.cos(pha)
        imag = mag * torch.sin(pha)
        x_out = torch.complex(real, imag)
        x_out = torch.fft.irfft2(x_out, s=(H, W), norm='backward')

        return x_out+x

class ProcessBlock(nn.Module):
    def __init__(self, in_nc, spatial = True):
        super(ProcessBlock,self).__init__()
        self.spatial = spatial
        self.spatial_process = SpaBlock(in_nc) if spatial else nn.Identity()
        self.frequency_process = FreBlock(in_nc)
        self.cat = nn.Conv2d(2*in_nc,in_nc,1,1,0) if spatial else nn.Conv2d(in_nc,in_nc,1,1,0)

    def forward(self, x):
        xori = x
        x_freq = self.frequency_process(x)
        x_spatial = self.spatial_process(x)
        xcat = torch.cat([x_spatial,x_freq],1)
        x_out = self.cat(xcat) if self.spatial else self.cat(x_freq)

        return x_out+xori

class SFNet(nn.Module):

    def __init__(self, nc,n=5):
        super(SFNet,self).__init__()

        self.list_block = list()
        for index in range(n):

            self.list_block.append(ProcessBlock(nc,spatial=False))
  
        self.block = nn.Sequential(*self.list_block)

    def forward(self, x):

        x_ori = x
        x_out = self.block(x_ori)
        xout = x_ori + x_out

        return xout

class AmplitudeNet_skip(nn.Module):
    def __init__(self, nc,n=1):
        super(AmplitudeNet_skip,self).__init__()

        self.conv1 = nn.Sequential(
            nn.Conv2d(3, nc, 1, 1, 0),
            ProcessBlock(nc),
        )
        self.conv2 = ProcessBlock(nc)
        self.conv3 = ProcessBlock(nc)
        self.conv4 = nn.Sequential(
            ProcessBlock(nc * 2),
            nn.Conv2d(nc * 2, nc, 1, 1, 0),
        )

        self.conv5 = nn.Sequential(
            ProcessBlock(nc * 2),
            nn.Conv2d(nc * 2, nc, 1, 1, 0),
        )

        self.convout = nn.Sequential(
            ProcessBlock(nc * 2),
            nn.Conv2d(nc * 2, 3, 1, 1, 0),
        )

    def forward(self, x):

        x1 = self.conv1(x)
        x2 = self.conv2(x1)
        x3 = self.conv3(x2)
        x4 = self.conv5(torch.cat((x2, x3), dim=1))
        xout = self.convout(torch.cat((x1, x4), dim=1))

        return xout