import torch import torch.nn as nn import torch.nn.functional as F import functools try: from .arch_util import EBlock, Attention_Light from .arch_util_freq import EBlock_freq except: from arch_util import EBlock, Attention_Light from arch_util_freq import EBlock_freq class Network(nn.Module): def __init__(self, img_channel=3, width=16, middle_blk_num=1, enc_blk_nums=[], dec_blk_nums=[], dilations = [1], extra_depth_wise = False): super(Network, self).__init__() self.intro = nn.Conv2d(in_channels=img_channel, out_channels=width, kernel_size=3, padding=1, stride=1, groups=1, bias=True) self.ending = nn.Conv2d(in_channels=width, out_channels=img_channel, kernel_size=3, padding=1, stride=1, groups=1, bias=True) self.encoders = nn.ModuleList() self.decoders = nn.ModuleList() self.middle_blks = nn.ModuleList() self.ups = nn.ModuleList() self.downs = nn.ModuleList() chan = width for num in enc_blk_nums: self.encoders.append( nn.Sequential( *[EBlock(chan, dilations = dilations, extra_depth_wise=extra_depth_wise) for _ in range(num)] ) ) self.downs.append( nn.Conv2d(chan, 2*chan, 2, 2) ) chan = chan * 2 self.middle_blks = \ nn.Sequential( *[EBlock(chan, dilations = dilations, extra_depth_wise=extra_depth_wise) for _ in range(middle_blk_num)] ) for num in dec_blk_nums: self.ups.append( nn.Sequential( nn.Conv2d(chan, chan * 2, 1, bias=False), nn.PixelShuffle(2) ) ) chan = chan // 2 self.decoders.append( nn.Sequential( *[EBlock(chan, extra_depth_wise=extra_depth_wise) for _ in range(num)] ) ) self.padder_size = 2 ** len(self.encoders) #define the attention layers # self.recon_trunk_light = nn.Sequential(*[FBlock(c = chan * self.padder_size, # DW_Expand=2, FFN_Expand=2, dilations = dilations, # extra_depth_wise = False) for i in range(residual_layers)]) # ResidualBlock_noBN_f = functools.partial(ResidualBlock_noBN, nf = width * self.padder_size) # self.recon_trunk_light = make_layer(ResidualBlock_noBN_f, residual_layers) def forward(self, input): _, _, H, W = input.shape x = self.intro(input) encs = [] # i = 0 for encoder, down in zip(self.encoders, self.downs): x = encoder(x) # print(i, x.shape) encs.append(x) x = down(x) # i += 1 x = self.middle_blks(x) # print('3', x.shape) # apply the mask # x = x * mask # x = self.recon_trunk_light(x) for decoder, up, enc_skip in zip(self.decoders, self.ups, encs[::-1]): x = up(x) x = x + enc_skip x = decoder(x) x = self.ending(x) x = x + input return x[:, :, :H, :W] if __name__ == '__main__': img_channel = 3 width = 32 enc_blks = [1, 2, 3] middle_blk_num = 3 dec_blks = [3, 1, 1] residual_layers = 2 dilations = [1, 4] net = Network(img_channel=img_channel, width=width, middle_blk_num=middle_blk_num, enc_blk_nums=enc_blks, dec_blk_nums=dec_blks, dilations = dilations) # NAF = NAFNet(img_channel=img_channel, width=width, middle_blk_num=middle_blk_num, # enc_blk_nums=enc_blks, dec_blk_nums=dec_blks) inp_shape = (3, 256, 256) from ptflops import get_model_complexity_info macs, params = get_model_complexity_info(net, inp_shape, verbose=False, print_per_layer_stat=False) print(macs, params) inp = torch.randn(1, 3, 256, 256) out = net(inp)