File size: 2,012 Bytes
21c571e
933d893
21c571e
 
0659652
c7ab302
21c571e
0659652
 
 
 
7b22e2e
0659652
 
b5fe0df
 
 
 
21c571e
 
b5fe0df
21c571e
0659652
 
dda8d7a
0659652
7b22e2e
dda8d7a
 
1705a9a
 
7b22e2e
 
 
a228c59
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
#import streamlit as st

#x = st.slider('Select a value')
#st.write(x, 'squared is', x * x)
import streamlit as st
from transformers import pipeline, AutoModelForMaskedLM, AutoTokenizer


st.title("Completamento del testo in Latino con Latin BERT")
st.write("Inserisci un testo con il token [MASK] per vedere le previsioni del modello.")

#dvces et reges carthaginiensivm hanno et mago qui [MASK] punico bello cornelium consulem aput liparas ceperunt
input_text = st.text_input("Testo:", value="Lorem ipsum dolor sit amet, [MASK] adipiscing elit.")

#modelname = "./models/latin_bert/"
modelname = "LuisAVasquez/simple-latin-bert-uncased"
tokenizer = AutoTokenizer.from_pretrained(modelname)
model = AutoModelForMaskedLM.from_pretrained(modelname)
# Creare un pipeline di riempimento maschere
fill_mask = pipeline("fill-mask", model=model, tokenizer=tokenizer)
#fill_mask = pipeline("fill-mask", model=modelname)

if input_text:
    predictions = fill_mask(input_text)
    st.subheader("Risultati delle previsioni con Simple Latin Bert:")
    for pred in predictions:
        st.write(f"**Parola**: {pred['token_str']}, **Probabilità**: {pred['score']:.4f}, **Sequence**: {pred['sequence']}")

    st.subheader("Risultati delle previsioni con Latin Bert:")
    path_to_latin_bert = "./models/latin_bert/"
    unmasker = pipeline('fill-mask', model=path_to_latin_bert)
    result = unmasker(input_text)
    for pred_due in result:
        st.write(f"**Parola**: {pred_due['token_str']}, **Probabilità**: {pred_due['score']:.4f}, **Sequence**: {pred_due['sequence']}")

    st.subheader("Risultati delle previsioni con bert-base-latin-uncased:")
    path_to_bert_base = "./models/bert-base-latin-uncased/"
    unmasker_bert_base = pipeline('fill-mask', model=path_to_bert_base)
    result_bert_base = unmasker_bert_base(input_text)
    for pred_tre in result_bert_base:
        st.write(f"**Parola**: {pred_tre['token_str']}, **Probabilità**: {pred_tre['score']:.4f}, **Sequence**: {pred_tre['sequence']}")