Spaces:
Running
on
Zero
Running
on
Zero
File size: 5,149 Bytes
934bde2 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 |
import argparse
import os
import torch
from PIL import Image
from diffusers import DDIMScheduler
from controlnet.pipline_controlnet_xs_v2 import StableDiffusionPipelineXSv2
from controlnet.controlnetxs_appearance import StyleCodesModel
from diffusers.models import UNet2DConditionModel
from transformers import AutoProcessor, SiglipVisionModel
def process_single_image(image_path, image=None):
# Set up model components
unet = UNet2DConditionModel.from_pretrained("runwayml/stable-diffusion-v1-5", subfolder="unet", torch_dtype=torch.float16, device="cuda")
stylecodes_model = StyleCodesModel.from_unet(unet, size_ratio=1.0).to(dtype=torch.float16, device="cuda")
stylecodes_model.requires_grad_(False)
stylecodes_model= stylecodes_model.to("cuda")
stylecodes_model.load_model("models/controlnet_model_11_80000.bin")
# Load and preprocess image
if image is None:
image = Image.open(image_path).convert("RGB")
image = image.resize((512, 512))
# Set up generator with a fixed seed for reproducibility
seed = 238
clip_image_processor = AutoProcessor.from_pretrained("google/siglip-base-patch16-224")
image_encoder = SiglipVisionModel.from_pretrained("google/siglip-base-patch16-224").to(dtype=torch.float16,device=stylecodes_model.device)
clip_image = clip_image_processor(images=image, return_tensors="pt").pixel_values
clip_image = clip_image.to(stylecodes_model.device, dtype=torch.float16)
clip_image = {"pixel_values": clip_image}
clip_image_embeds = image_encoder(**clip_image, output_hidden_states=True).hidden_states[-2]
# Run the image through the pipeline with the specified prompt
code = stylecodes_model.sref_autoencoder.make_stylecode(clip_image_embeds)
print("stylecode = ",code)
return code
def process_single_image_both_ways(image_path, prompt, num_inference_steps,image=None):
# Load and preprocess image
# Set up model components
unet = UNet2DConditionModel.from_pretrained("runwayml/stable-diffusion-v1-5", subfolder="unet", torch_dtype=torch.float16, device="cuda")
stylecodes_model = StyleCodesModel.from_unet(unet, size_ratio=1.0).to(dtype=torch.float16, device="cuda")
noise_scheduler = DDIMScheduler(
num_train_timesteps=1000,
beta_start=0.00085,
beta_end=0.012,
beta_schedule="scaled_linear",
clip_sample=False,
set_alpha_to_one=False,
steps_offset=1,
)
stylecodes_model.load_model("models/controlnet_model_11_80000.bin")
pipe = StableDiffusionPipelineXSv2.from_pretrained(
"runwayml/stable-diffusion-v1-5",
unet=unet,
stylecodes_model=stylecodes_model,
torch_dtype=torch.float16,
device="cuda",
scheduler=noise_scheduler,
feature_extractor=None,
safety_checker=None,
)
pipe.enable_model_cpu_offload()
if image is None:
image = Image.open(image_path).convert("RGB")
image = image.resize((512, 512))
# Set up generator with a fixed seed for reproducibility
seed = 238
generator = torch.Generator(device="cuda").manual_seed(seed)
# Run the image through the pipeline with the specified prompt
output_images = pipe(
prompt=prompt,
guidance_scale=3,
image=image,
num_inference_steps=num_inference_steps,
generator=generator,
controlnet_conditioning_scale=0.9,
width=512,
height=512,
stylecode=None,
).images
return output_images
# Save the output image
def make_stylecode(image_path, image=None):
# Set up model components
unet = UNet2DConditionModel.from_pretrained("runwayml/stable-diffusion-v1-5", subfolder="unet", torch_dtype=torch.float16, device="cuda")
stylecodes_model = StyleCodesModel.from_unet(unet, size_ratio=1.0).to(dtype=torch.float16, device="cuda")
stylecodes_model.requires_grad_(False)
stylecodes_model= stylecodes_model.to("cuda")
stylecodes_model.load_model("models/controlnet_model_11_80000.bin")
# Load and preprocess image
if image is None:
image = Image.open(image_path).convert("RGB")
image = image.resize((512, 512))
# Set up generator with a fixed seed for reproducibility
seed = 238
clip_image_processor = AutoProcessor.from_pretrained("google/siglip-base-patch16-224")
image_encoder = SiglipVisionModel.from_pretrained("google/siglip-base-patch16-224").to(dtype=torch.float16,device=stylecodes_model.device)
clip_image = clip_image_processor(images=image, return_tensors="pt").pixel_values
clip_image = clip_image.to(stylecodes_model.device, dtype=torch.float16)
clip_image = {"pixel_values": clip_image}
clip_image_embeds = image_encoder(**clip_image, output_hidden_states=True).hidden_states[-2]
# Run the image through the pipeline with the specified prompt
code = stylecodes_model.sref_autoencoder.make_stylecode(clip_image_embeds)
print("stylecode = ",code)
return code |