Spaces:
Runtime error
Runtime error
| from toolbox import CatchException, report_execption, write_results_to_file | |
| from .crazy_utils import request_gpt_model_in_new_thread_with_ui_alive | |
| from .crazy_utils import request_gpt_model_multi_threads_with_very_awesome_ui_and_high_efficiency | |
| def read_and_clean_pdf_text(fp): | |
| """ | |
| **输入参数说明** | |
| - `fp`:需要读取和清理文本的pdf文件路径 | |
| **输出参数说明** | |
| - `meta_txt`:清理后的文本内容字符串 | |
| - `page_one_meta`:第一页清理后的文本内容列表 | |
| **函数功能** | |
| 读取pdf文件并清理其中的文本内容,清理规则包括: | |
| - 提取所有块元的文本信息,并合并为一个字符串 | |
| - 去除短块(字符数小于100)并替换为回车符 | |
| - 清理多余的空行 | |
| - 合并小写字母开头的段落块并替换为空格 | |
| - 清除重复的换行 | |
| - 将每个换行符替换为两个换行符,使每个段落之间有两个换行符分隔 | |
| """ | |
| import fitz | |
| import re | |
| import numpy as np | |
| # file_content = "" | |
| with fitz.open(fp) as doc: | |
| meta_txt = [] | |
| meta_font = [] | |
| for index, page in enumerate(doc): | |
| # file_content += page.get_text() | |
| text_areas = page.get_text("dict") # 获取页面上的文本信息 | |
| # 块元提取 for each word segment with in line for each line cross-line words for each block | |
| meta_txt.extend([" ".join(["".join([wtf['text'] for wtf in l['spans']]) for l in t['lines']]).replace( | |
| '- ', '') for t in text_areas['blocks'] if 'lines' in t]) | |
| meta_font.extend([np.mean([np.mean([wtf['size'] for wtf in l['spans']]) | |
| for l in t['lines']]) for t in text_areas['blocks'] if 'lines' in t]) | |
| if index == 0: | |
| page_one_meta = [" ".join(["".join([wtf['text'] for wtf in l['spans']]) for l in t['lines']]).replace( | |
| '- ', '') for t in text_areas['blocks'] if 'lines' in t] | |
| def 把字符太少的块清除为回车(meta_txt): | |
| for index, block_txt in enumerate(meta_txt): | |
| if len(block_txt) < 100: | |
| meta_txt[index] = '\n' | |
| return meta_txt | |
| meta_txt = 把字符太少的块清除为回车(meta_txt) | |
| def 清理多余的空行(meta_txt): | |
| for index in reversed(range(1, len(meta_txt))): | |
| if meta_txt[index] == '\n' and meta_txt[index-1] == '\n': | |
| meta_txt.pop(index) | |
| return meta_txt | |
| meta_txt = 清理多余的空行(meta_txt) | |
| def 合并小写开头的段落块(meta_txt): | |
| def starts_with_lowercase_word(s): | |
| pattern = r"^[a-z]+" | |
| match = re.match(pattern, s) | |
| if match: | |
| return True | |
| else: | |
| return False | |
| for _ in range(100): | |
| for index, block_txt in enumerate(meta_txt): | |
| if starts_with_lowercase_word(block_txt): | |
| if meta_txt[index-1] != '\n': | |
| meta_txt[index-1] += ' ' | |
| else: | |
| meta_txt[index-1] = '' | |
| meta_txt[index-1] += meta_txt[index] | |
| meta_txt[index] = '\n' | |
| return meta_txt | |
| meta_txt = 合并小写开头的段落块(meta_txt) | |
| meta_txt = 清理多余的空行(meta_txt) | |
| meta_txt = '\n'.join(meta_txt) | |
| # 清除重复的换行 | |
| for _ in range(5): | |
| meta_txt = meta_txt.replace('\n\n', '\n') | |
| # 换行 -> 双换行 | |
| meta_txt = meta_txt.replace('\n', '\n\n') | |
| return meta_txt, page_one_meta | |
| def 批量翻译PDF文档(txt, top_p, temperature, chatbot, history, sys_prompt, WEB_PORT): | |
| import glob | |
| import os | |
| # 基本信息:功能、贡献者 | |
| chatbot.append([ | |
| "函数插件功能?", | |
| "批量总结PDF文档。函数插件贡献者: Binary-Husky(二进制哈士奇)"]) | |
| yield chatbot, history, '正常' | |
| # 尝试导入依赖,如果缺少依赖,则给出安装建议 | |
| try: | |
| import fitz | |
| import tiktoken | |
| except: | |
| report_execption(chatbot, history, | |
| a=f"解析项目: {txt}", | |
| b=f"导入软件依赖失败。使用该模块需要额外依赖,安装方法```pip install --upgrade pymupdf tiktoken```。") | |
| yield chatbot, history, '正常' | |
| return | |
| # 清空历史,以免输入溢出 | |
| history = [] | |
| # 检测输入参数,如没有给定输入参数,直接退出 | |
| if os.path.exists(txt): | |
| project_folder = txt | |
| else: | |
| if txt == "": | |
| txt = '空空如也的输入栏' | |
| report_execption(chatbot, history, | |
| a=f"解析项目: {txt}", b=f"找不到本地项目或无权访问: {txt}") | |
| yield chatbot, history, '正常' | |
| return | |
| # 搜索需要处理的文件清单 | |
| file_manifest = [f for f in glob.glob( | |
| f'{project_folder}/**/*.pdf', recursive=True)] | |
| # 如果没找到任何文件 | |
| if len(file_manifest) == 0: | |
| report_execption(chatbot, history, | |
| a=f"解析项目: {txt}", b=f"找不到任何.tex或.pdf文件: {txt}") | |
| yield chatbot, history, '正常' | |
| return | |
| # 开始正式执行任务 | |
| yield from 解析PDF(file_manifest, project_folder, top_p, temperature, chatbot, history, sys_prompt) | |
| def 解析PDF(file_manifest, project_folder, top_p, temperature, chatbot, history, sys_prompt): | |
| import os | |
| import tiktoken | |
| TOKEN_LIMIT_PER_FRAGMENT = 1600 | |
| generated_conclusion_files = [] | |
| for index, fp in enumerate(file_manifest): | |
| # 读取PDF文件 | |
| file_content, page_one = read_and_clean_pdf_text(fp) | |
| # 递归地切割PDF文件 | |
| from .crazy_utils import breakdown_txt_to_satisfy_token_limit_for_pdf | |
| enc = tiktoken.get_encoding("gpt2") | |
| def get_token_num(txt): return len(enc.encode(txt)) | |
| # 分解文本 | |
| paper_fragments = breakdown_txt_to_satisfy_token_limit_for_pdf( | |
| txt=file_content, get_token_fn=get_token_num, limit=TOKEN_LIMIT_PER_FRAGMENT) | |
| page_one_fragments = breakdown_txt_to_satisfy_token_limit_for_pdf( | |
| txt=str(page_one), get_token_fn=get_token_num, limit=TOKEN_LIMIT_PER_FRAGMENT//4) | |
| # 为了更好的效果,我们剥离Introduction之后的部分 | |
| paper_meta = page_one_fragments[0].split('introduction')[0].split( | |
| 'Introduction')[0].split('INTRODUCTION')[0] | |
| # 单线,获取文章meta信息 | |
| paper_meta_info = yield from request_gpt_model_in_new_thread_with_ui_alive( | |
| inputs=f"以下是一篇学术论文的基础信息,请从中提取出“标题”、“收录会议或期刊”、“作者”、“摘要”、“编号”、“作者邮箱”这六个部分。请用markdown格式输出,最后用中文翻译摘要部分。请提取:{paper_meta}", | |
| inputs_show_user=f"请从{fp}中提取出“标题”、“收录会议或期刊”等基本信息。", | |
| top_p=top_p, temperature=temperature, | |
| chatbot=chatbot, history=[], | |
| sys_prompt="Your job is to collect information from materials。", | |
| ) | |
| # 多线,翻译 | |
| gpt_response_collection = yield from request_gpt_model_multi_threads_with_very_awesome_ui_and_high_efficiency( | |
| inputs_array=[ | |
| f"以下是你需要翻译的文章段落:\n{frag}" for frag in paper_fragments], | |
| inputs_show_user_array=[f"" for _ in paper_fragments], | |
| top_p=top_p, temperature=temperature, | |
| chatbot=chatbot, | |
| history_array=[[paper_meta] for _ in paper_fragments], | |
| sys_prompt_array=[ | |
| "请你作为一个学术翻译,把整个段落翻译成中文,要求语言简洁,禁止重复输出原文。" for _ in paper_fragments], | |
| max_workers=16 # OpenAI所允许的最大并行过载 | |
| ) | |
| final = ["", paper_meta_info + '\n\n---\n\n---\n\n---\n\n'] | |
| final.extend(gpt_response_collection) | |
| create_report_file_name = f"{os.path.basename(fp)}.trans.md" | |
| res = write_results_to_file(final, file_name=create_report_file_name) | |
| generated_conclusion_files.append( | |
| f'./gpt_log/{create_report_file_name}') | |
| chatbot.append((f"{fp}完成了吗?", res)) | |
| msg = "完成" | |
| yield chatbot, history, msg | |
| # 准备文件的下载 | |
| import shutil | |
| for pdf_path in generated_conclusion_files: | |
| # 重命名文件 | |
| rename_file = f'./gpt_log/总结论文-{os.path.basename(pdf_path)}' | |
| if os.path.exists(rename_file): | |
| os.remove(rename_file) | |
| shutil.copyfile(pdf_path, rename_file) | |
| if os.path.exists(pdf_path): | |
| os.remove(pdf_path) | |
| chatbot.append(("给出输出文件清单", str(generated_conclusion_files))) | |
| yield chatbot, history, msg | |