Spaces:
Sleeping
Sleeping
Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,47 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Load model directly
|
2 |
+
from transformers import AutoTokenizer, AutoModelForImageTextToText
|
3 |
+
from transformers import VisionEncoderDecoderModel, TrOCRProcessor
|
4 |
+
import torch
|
5 |
+
import torch
|
6 |
+
from PIL import Image
|
7 |
+
|
8 |
+
processor = TrOCRProcessor.from_pretrained("microsoft/trocr-base-printed")
|
9 |
+
model = AutoModelForImageTextToText.from_pretrained("ChronoStellar/TrOCR_IndonesianLPR")
|
10 |
+
|
11 |
+
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
12 |
+
model.to(device)
|
13 |
+
|
14 |
+
import gradio as gr
|
15 |
+
from PIL import Image
|
16 |
+
import torch
|
17 |
+
|
18 |
+
# Assuming model, processor, and device are already defined
|
19 |
+
|
20 |
+
def OCR(pil_image, model=model, processor=processor, device=device):
|
21 |
+
# Prepare image for the model
|
22 |
+
pixel_values = processor(pil_image, return_tensors="pt").pixel_values
|
23 |
+
|
24 |
+
# Move the input to the appropriate device (CPU/GPU)
|
25 |
+
pixel_values = pixel_values.to(device)
|
26 |
+
|
27 |
+
# Generate prediction
|
28 |
+
model.eval() # Set the model to evaluation mode
|
29 |
+
with torch.no_grad(): # Disable gradient calculation for inference
|
30 |
+
generated_ids = model.generate(pixel_values)
|
31 |
+
|
32 |
+
# Decode the predicted IDs to get the text
|
33 |
+
predicted_text = processor.batch_decode(generated_ids, skip_special_tokens=True)[0]
|
34 |
+
|
35 |
+
return predicted_text
|
36 |
+
|
37 |
+
# Create Gradio interface
|
38 |
+
interface = gr.Interface(
|
39 |
+
fn=OCR,
|
40 |
+
inputs=gr.Image(type="pil", label="Upload License Plate Image"),
|
41 |
+
outputs=gr.Textbox(label="Predicted License Plate"),
|
42 |
+
title="Automatic License Plate Recognition",
|
43 |
+
description="Upload an image of a license plate, and the system will predict the text on it.",
|
44 |
+
)
|
45 |
+
|
46 |
+
# Launch the Gradio app
|
47 |
+
interface.launch()
|