|
import numpy as np |
|
import pandas as pd |
|
|
|
import os |
|
import pydicom |
|
|
|
import streamlit as st |
|
from streamlit_cropper import st_cropper |
|
|
|
|
|
|
|
|
|
|
|
|
|
import matplotlib.pyplot as plt |
|
from PIL import Image |
|
|
|
from fastai.vision.all import * |
|
|
|
import pathlib |
|
import platform |
|
|
|
plt = platform.system() |
|
if plt == 'Linux': |
|
pathlib.WindowsPath = pathlib.PosixPath |
|
|
|
|
|
script_dir = os.path.dirname(os.path.realpath(__file__)) |
|
|
|
st.set_page_config(page_title="Aplicaci贸n cancer de mama - IXCHEN") |
|
|
|
os.environ['PROTOCOL_BUFFERS_PYTHON_IMPLEMENTATION'] = 'python' |
|
|
|
class Modelo: |
|
|
|
def __init__(self, model_name): |
|
self.model_name = model_name |
|
self.modelo = self.cargar_modelo(self.model_name) |
|
|
|
def cargar_modelo(self, modelo): |
|
if modelo == "alexnet": |
|
return load_learner(os.path.join(script_dir, 'clasificacion_alexnet.pkl')) |
|
elif modelo == 'restnet50': |
|
return load_learner(os.path.join(script_dir, 'clasificacion.pkl')) |
|
|
|
def predecir(self, imagen): |
|
_, _, probs = self.modelo.predict(imagen) |
|
return probs |
|
|
|
modelo_alexnet = Modelo('alexnet') |
|
modelo_resnet50 = Modelo('restnet50') |
|
|
|
realtime_update = st.sidebar.checkbox(label="Actualizar en tiempo real", value=True) |
|
box_color = st.sidebar.color_picker(label="Color caja", value='#0000FF') |
|
aspect_choice = st.sidebar.radio(label="Relaci贸n aspecto", options=["1:1", "16:9", "4:3", "2:3", "Free"]) |
|
aspect_dict = { |
|
"1:1": (1, 1), |
|
"16:9": (16, 9), |
|
"4:3": (4, 3), |
|
"2:3": (2, 3), |
|
"Free": None |
|
} |
|
|
|
aspect_ratio = aspect_dict[aspect_choice] |
|
class_names = ['Benigno', 'Maligno', 'Normal'] |
|
|
|
def cargar_dicom_file(image_bytes, tipo): |
|
if tipo != 'storage': |
|
dcm = pydicom.dcmread(image_bytes) |
|
else: |
|
dcm = pydicom.dcmread(image_bytes) |
|
numpy_lossy_image = dcm.pixel_array |
|
return np.squeeze(numpy_lossy_image) |
|
|
|
def mostrar_resultados_prediccion(crop_image): |
|
resultado_alexnet = modelo_alexnet.predecir(crop_image) |
|
resultado_resnet50 = modelo_resnet50.predecir(crop_image) |
|
return resultado_alexnet, resultado_resnet50 |
|
|
|
def obtener_valor_tag(image_byte, tag: int) -> str: |
|
raw_tag_value = tfio.image.decode_dicom_data(image_byte, tag).numpy() |
|
return raw_tag_value.decode('utf-8') |
|
|
|
|
|
st.write("# Modelo de Machine Learning para el diagnostico del cancer de mama") |
|
uploaded_file = st.file_uploader("Subir archivo DICOM", type=[".dcm"]) |
|
if uploaded_file: |
|
dicom_file = cargar_dicom_file(uploaded_file, tipo='') |
|
img = Image.fromarray(dicom_file) |
|
rect = st_cropper(img,realtime_update=realtime_update, box_color=box_color, |
|
aspect_ratio=aspect_ratio, return_type='box') |
|
realizar_prediccion = st.button("Realizar predicci贸n") |
|
st.session_state['uploaded_file'] = uploaded_file.getvalue() |
|
if realizar_prediccion: |
|
st.empty() |
|
crop = dicom_file[ |
|
rect['top']:rect['height'] + rect['top'], |
|
rect['left']:rect['width'] + rect['left']] |
|
resultado_alexnet, resultado_restnet50 = mostrar_resultados_prediccion( crop) |
|
resultado_alexnet = np.squeeze(resultado_alexnet) * 100 |
|
resultado_resnet50 = np.squeeze(resultado_restnet50) * 100 |
|
datos_alexnet = { |
|
"Probabilidad": resultado_alexnet, |
|
"Clase": class_names |
|
} |
|
df_alexnet = pd.DataFrame(data=datos_alexnet).set_index('Clase') |
|
datos_resnet50 = { |
|
"Probabilidad": resultado_resnet50, |
|
"Clase": class_names |
|
} |
|
df_resnet50 = pd.DataFrame(data=datos_resnet50).set_index('Clase') |
|
st.write("### Probabilidades seg煤n tipo de tumor - AlexNet") |
|
st.bar_chart(df_alexnet) |
|
st.write("### Probabilidades seg煤n tipo de tumor - ResNet50") |
|
st.bar_chart(df_resnet50) |