import gradio as gr from pydantic import BaseModel, Field from typing import Any, Optional, Dict, List from huggingface_hub import InferenceClient from langchain.llms.base import LLM hf_token = os.getenv("HUGGINGFACEHUB_API_TOKEN") class KwArgsModel(BaseModel): kwargs: Dict[str, Any] = Field(default_factory=dict) class CustomInferenceClient(LLM, KwArgsModel): model_name: str inference_client: InferenceClient def __init__(self, model_name: str, hf_token: str, kwargs: Optional[Dict[str, Any]] = None): inference_client = InferenceClient(model=model_name, token=hf_token) super().__init__( model_name=model_name, hf_token=hf_token, kwargs=kwargs, inference_client=inference_client ) def _call( self, prompt: str, stop: Optional[List[str]] = None ) -> str: if stop is not None: raise ValueError("stop kwargs are not permitted.") response_gen = self.inference_client.text_generation(prompt, **self.kwargs, stream=True) response = ''.join(response_gen) return response @property def _llm_type(self) -> str: return "custom" @property def _identifying_params(self) -> dict: return {"model_name": self.model_name} kwargs = {"max_new_tokens":256, "temperature":0.9, "top_p":0.6, "repetition_penalty":1.3, "do_sample":True}