Chris4K commited on
Commit
8542171
·
verified ·
1 Parent(s): 23e19ad

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +0 -28
app.py CHANGED
@@ -463,34 +463,6 @@ def optimize_vocabulary(texts, vocab_size=10000, min_frequency=2):
463
  tokenizer.train_from_iterator(optimized_texts, trainer)
464
 
465
  return tokenizer, optimized_texts
466
-
467
- # New preprocessing function
468
- def optimize_query(query, llm_model, chunks, embedding_model, vector_store_type, search_type, top_k):
469
- # Use a HuggingFace model for text generation
470
- #model_id = "google/flan-t5-large"
471
- #tokenizer = AutoTokenizer.from_pretrained(model_id)
472
- #model = AutoModelForCausalLM.from_pretrained(model_id)
473
- #pipe = pipeline(
474
- # "text-generation", model=model, tokenizer=tokenizer, max_new_tokens=512
475
- #)
476
- #llm = HuggingFacePipeline(pipeline=pipe)
477
-
478
- #llm = HuggingFacePipeline(pipeline(model="HuggingFaceH4/zephyr-7b-beta"))
479
-
480
-
481
- # Create a temporary vector store for query optimization
482
- temp_vector_store = get_vector_store(vector_store_type, chunks, embedding_model)
483
-
484
- # Create a retriever with the temporary vector store
485
- temp_retriever = get_retriever(temp_vector_store, search_type, {"k": top_k})
486
-
487
- multi_query_retriever = MultiQueryRetriever.from_llm(
488
- retriever=temp_retriever,
489
- llm=llm
490
- )
491
- optimized_queries = multi_query_retriever.generate_queries(query)
492
- return optimized_queries
493
-
494
 
495
  # New postprocessing function
496
  def rerank_results(results, query, reranker):
 
463
  tokenizer.train_from_iterator(optimized_texts, trainer)
464
 
465
  return tokenizer, optimized_texts
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
466
 
467
  # New postprocessing function
468
  def rerank_results(results, query, reranker):