Chris4K commited on
Commit
5f5975a
·
verified ·
1 Parent(s): 0a9f192

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +6 -6
app.py CHANGED
@@ -177,7 +177,6 @@ def phonetic_match(text, query, method='levenshtein_distance', apply_phonetic=Tr
177
  return jellyfish.levenshtein_distance(text_phonetic, query_phonetic)
178
  return 0
179
 
180
- #def optimize_query(query, llm_model):
181
  def optimize_query(
182
  query: str,
183
  llm_model: str = "meta-llama/Llama-3.2-1B",
@@ -185,10 +184,10 @@ def optimize_query(
185
  embedding_model: str = "sentence-transformers/all-MiniLM-L6-v2",
186
  vector_store_type: str = "faiss",
187
  search_type: str = "similarity",
188
- top_k: int = 5
189
  ) -> List[str]:
190
  # Initialize the language model
191
- #llm = HuggingFacePipeline(model=llm_model)
192
 
193
  # Create a temporary vector store for query optimization
194
  temp_vector_store = get_vector_store(vector_store_type, chunks, embedding_model)
@@ -202,10 +201,11 @@ def optimize_query(
202
  llm=llm
203
  )
204
 
205
- # Use a NoOpRunManager as the run manager
206
- optimized_queries = multi_query_retriever.invoke(query)
 
 
207
 
208
- return optimized_queries
209
 
210
 
211
  def create_custom_embedding(texts, model_type='word2vec', vector_size=100, window=5, min_count=1):
 
177
  return jellyfish.levenshtein_distance(text_phonetic, query_phonetic)
178
  return 0
179
 
 
180
  def optimize_query(
181
  query: str,
182
  llm_model: str = "meta-llama/Llama-3.2-1B",
 
184
  embedding_model: str = "sentence-transformers/all-MiniLM-L6-v2",
185
  vector_store_type: str = "faiss",
186
  search_type: str = "similarity",
187
+ top_k: int = 3 # Reduce top_k for quicker test
188
  ) -> List[str]:
189
  # Initialize the language model
190
+ #llm = HuggingFacePipeline(pipeline(model=llm_model))
191
 
192
  # Create a temporary vector store for query optimization
193
  temp_vector_store = get_vector_store(vector_store_type, chunks, embedding_model)
 
201
  llm=llm
202
  )
203
 
204
+ # Limit max time or set a timeout for LLM to avoid endless execution
205
+ optimized_queries = multi_query_retriever.invoke(query, max_time=30) # Timeout in seconds
206
+
207
+ return optimized_queries
208
 
 
209
 
210
 
211
  def create_custom_embedding(texts, model_type='word2vec', vector_size=100, window=5, min_count=1):