|
import os |
|
import time |
|
import pdfplumber |
|
import docx |
|
import nltk |
|
import gradio as gr |
|
from langchain_huggingface import HuggingFaceEmbeddings |
|
from langchain_community.embeddings import ( |
|
OpenAIEmbeddings, |
|
CohereEmbeddings, |
|
) |
|
from langchain_openai import OpenAIEmbeddings |
|
from langchain_community.vectorstores import FAISS, Chroma |
|
from langchain_text_splitters import ( |
|
RecursiveCharacterTextSplitter, |
|
TokenTextSplitter, |
|
) |
|
from typing import List, Dict, Any |
|
import pandas as pd |
|
|
|
nltk.download('punkt', quiet=True) |
|
|
|
FILES_DIR = './files' |
|
|
|
MODELS = { |
|
'HuggingFace': { |
|
'e5-base-de': "danielheinz/e5-base-sts-en-de", |
|
'paraphrase-miniLM': "paraphrase-multilingual-MiniLM-L12-v2", |
|
'paraphrase-mpnet': "paraphrase-multilingual-mpnet-base-v2", |
|
'gte-large': "gte-large", |
|
'gbert-base': "gbert-base" |
|
}, |
|
'OpenAI': { |
|
'text-embedding-ada-002': "text-embedding-ada-002" |
|
}, |
|
'Cohere': { |
|
'embed-multilingual-v2.0': "embed-multilingual-v2.0" |
|
} |
|
} |
|
|
|
class FileHandler: |
|
@staticmethod |
|
def extract_text(file_path): |
|
ext = os.path.splitext(file_path)[-1].lower() |
|
if ext == '.pdf': |
|
return FileHandler._extract_from_pdf(file_path) |
|
elif ext == '.docx': |
|
return FileHandler._extract_from_docx(file_path) |
|
elif ext == '.txt': |
|
return FileHandler._extract_from_txt(file_path) |
|
else: |
|
raise ValueError(f"Unsupported file type: {ext}") |
|
|
|
@staticmethod |
|
def _extract_from_pdf(file_path): |
|
with pdfplumber.open(file_path) as pdf: |
|
return ' '.join([page.extract_text() for page in pdf.pages]) |
|
|
|
@staticmethod |
|
def _extract_from_docx(file_path): |
|
doc = docx.Document(file_path) |
|
return ' '.join([para.text for para in doc.paragraphs]) |
|
|
|
@staticmethod |
|
def _extract_from_txt(file_path): |
|
with open(file_path, 'r', encoding='utf-8') as f: |
|
return f.read() |
|
|
|
def get_embedding_model(model_type, model_name): |
|
if model_type == 'HuggingFace': |
|
return HuggingFaceEmbeddings(model_name=MODELS[model_type][model_name]) |
|
elif model_type == 'OpenAI': |
|
return OpenAIEmbeddings(model=MODELS[model_type][model_name]) |
|
elif model_type == 'Cohere': |
|
return CohereEmbeddings(model=MODELS[model_type][model_name]) |
|
else: |
|
raise ValueError(f"Unsupported model type: {model_type}") |
|
|
|
def get_text_splitter(split_strategy, chunk_size, overlap_size, custom_separators=None): |
|
if split_strategy == 'token': |
|
return TokenTextSplitter(chunk_size=chunk_size, chunk_overlap=overlap_size) |
|
elif split_strategy == 'recursive': |
|
return RecursiveCharacterTextSplitter( |
|
chunk_size=chunk_size, |
|
chunk_overlap=overlap_size, |
|
separators=custom_separators or ["\n\n", "\n", " ", ""] |
|
) |
|
else: |
|
raise ValueError(f"Unsupported split strategy: {split_strategy}") |
|
|
|
def get_vector_store(store_type, texts, embedding_model): |
|
if store_type == 'FAISS': |
|
return FAISS.from_texts(texts, embedding_model) |
|
elif store_type == 'Chroma': |
|
return Chroma.from_texts(texts, embedding_model) |
|
else: |
|
raise ValueError(f"Unsupported vector store type: {store_type}") |
|
|
|
def get_retriever(vector_store, search_type, search_kwargs=None): |
|
if search_type == 'similarity': |
|
return vector_store.as_retriever(search_type="similarity", search_kwargs=search_kwargs) |
|
elif search_type == 'mmr': |
|
return vector_store.as_retriever(search_type="mmr", search_kwargs=search_kwargs) |
|
else: |
|
raise ValueError(f"Unsupported search type: {search_type}") |
|
|
|
def process_files(file_path, model_type, model_name, split_strategy, chunk_size, overlap_size, custom_separators): |
|
if file_path: |
|
text = FileHandler.extract_text(file_path) |
|
else: |
|
text = "" |
|
for file in os.listdir(FILES_DIR): |
|
file_path = os.path.join(FILES_DIR, file) |
|
text += FileHandler.extract_text(file_path) |
|
|
|
text_splitter = get_text_splitter(split_strategy, chunk_size, overlap_size, custom_separators) |
|
chunks = text_splitter.split_text(text) |
|
|
|
embedding_model = get_embedding_model(model_type, model_name) |
|
|
|
return chunks, embedding_model, len(text.split()) |
|
|
|
def search_embeddings(chunks, embedding_model, vector_store_type, search_type, query, top_k): |
|
vector_store = get_vector_store(vector_store_type, chunks, embedding_model) |
|
retriever = get_retriever(vector_store, search_type, {"k": top_k}) |
|
|
|
start_time = time.time() |
|
results = retriever.get_relevant_documents(query) |
|
end_time = time.time() |
|
|
|
return results, end_time - start_time, vector_store |
|
|
|
def calculate_statistics(results, search_time, vector_store, num_tokens, embedding_model): |
|
return { |
|
"num_results": len(results), |
|
"avg_content_length": sum(len(doc.page_content) for doc in results) / len(results) if results else 0, |
|
"search_time": search_time, |
|
"vector_store_size": vector_store._index.ntotal if hasattr(vector_store, '_index') else "N/A", |
|
"num_documents": len(vector_store.docstore._dict), |
|
"num_tokens": num_tokens, |
|
"embedding_vocab_size": embedding_model.client.get_vocab_size() if hasattr(embedding_model, 'client') and hasattr(embedding_model.client, 'get_vocab_size') else "N/A" |
|
} |
|
|
|
def compare_embeddings(file, query, model_types, model_names, split_strategy, chunk_size, overlap_size, custom_separators, vector_store_type, search_type, top_k): |
|
all_results = [] |
|
all_stats = [] |
|
settings = { |
|
"split_strategy": split_strategy, |
|
"chunk_size": chunk_size, |
|
"overlap_size": overlap_size, |
|
"custom_separators": custom_separators, |
|
"vector_store_type": vector_store_type, |
|
"search_type": search_type, |
|
"top_k": top_k |
|
} |
|
|
|
for model_type, model_name in zip(model_types, model_names): |
|
chunks, embedding_model, num_tokens = process_files( |
|
file.name if file else None, |
|
model_type, |
|
model_name, |
|
split_strategy, |
|
chunk_size, |
|
overlap_size, |
|
custom_separators.split(',') if custom_separators else None |
|
) |
|
|
|
results, search_time, vector_store = search_embeddings( |
|
chunks, |
|
embedding_model, |
|
vector_store_type, |
|
search_type, |
|
query, |
|
top_k |
|
) |
|
|
|
stats = calculate_statistics(results, search_time, vector_store, num_tokens, embedding_model) |
|
stats["model"] = f"{model_type} - {model_name}" |
|
stats.update(settings) |
|
|
|
formatted_results = format_results(results, stats) |
|
all_results.extend(formatted_results) |
|
all_stats.append(stats) |
|
|
|
results_df = pd.DataFrame(all_results) |
|
stats_df = pd.DataFrame(all_stats) |
|
|
|
return results_df, stats_df |
|
|
|
def format_results(results, stats): |
|
formatted_results = [] |
|
for doc in results: |
|
result = { |
|
"Content": doc.page_content, |
|
"Model": stats["model"], |
|
**doc.metadata, |
|
**{k: v for k, v in stats.items() if k not in ["model"]} |
|
} |
|
formatted_results.append(result) |
|
return formatted_results |
|
|
|
|
|
iface = gr.Interface( |
|
fn=compare_embeddings, |
|
inputs=[ |
|
gr.File(label="Upload File (Optional)"), |
|
gr.Textbox(label="Search Query"), |
|
gr.CheckboxGroup(choices=list(MODELS.keys()), label="Embedding Model Types", value=["HuggingFace"]), |
|
gr.CheckboxGroup(choices=[model for models in MODELS.values() for model in models], label="Embedding Models", value=["e5-base-de"]), |
|
gr.Radio(choices=["token", "recursive"], label="Split Strategy", value="recursive"), |
|
gr.Slider(100, 1000, step=100, value=500, label="Chunk Size"), |
|
gr.Slider(0, 100, step=10, value=50, label="Overlap Size"), |
|
gr.Textbox(label="Custom Split Separators (comma-separated, optional)"), |
|
gr.Radio(choices=["FAISS", "Chroma"], label="Vector Store Type", value="FAISS"), |
|
gr.Radio(choices=["similarity", "mmr"], label="Search Type", value="similarity"), |
|
gr.Slider(1, 10, step=1, value=5, label="Top K") |
|
], |
|
outputs=[ |
|
gr.Dataframe(label="Results"), |
|
gr.Dataframe(label="Statistics") |
|
], |
|
title="Embedding Comparison Tool", |
|
description="Compare different embedding models and retrieval strategies", |
|
examples=[ |
|
[ "files/test.txt", "What is machine learning?", ["HuggingFace"], ["e5-base-de"], "recursive", 500, 50, "", "FAISS", "similarity", 5] |
|
], |
|
flagging_mode="never" |
|
) |
|
|
|
|
|
|
|
|
|
tutorial_md = """ |
|
# Embedding Comparison Tool Tutorial |
|
|
|
This tool allows you to compare different embedding models and retrieval strategies for document search. Before we dive into how to use the tool, let's cover some important concepts. |
|
|
|
## What is RAG? |
|
|
|
RAG stands for Retrieval-Augmented Generation. It's a technique that combines the strength of large language models with the ability to access and use external knowledge. RAG is particularly useful for: |
|
|
|
- Providing up-to-date information |
|
- Answering questions based on specific documents or data sources |
|
- Reducing hallucinations in AI responses |
|
- Customizing AI outputs for specific domains or use cases |
|
|
|
RAG is good for applications where you need accurate, context-specific information retrieval combined with natural language generation. This includes chatbots, question-answering systems, and document analysis tools. |
|
|
|
## Key Components of RAG |
|
|
|
### 1. Document Loading |
|
|
|
This is the process of ingesting documents from various sources (PDFs, web pages, databases, etc.) into a format that can be processed by the RAG system. Efficient document loading is crucial for handling large volumes of data. |
|
|
|
### 2. Document Splitting |
|
|
|
Large documents are often split into smaller chunks for more efficient processing and retrieval. The choice of splitting method can significantly impact the quality of retrieval results. |
|
|
|
### 3. Vector Store and Embeddings |
|
|
|
Embeddings are dense vector representations of text that capture semantic meaning. A vector store is a database optimized for storing and querying these high-dimensional vectors. Together, they allow for efficient semantic search. |
|
|
|
### 4. Retrieval |
|
|
|
This is the process of finding the most relevant documents or chunks based on a query. The quality of retrieval directly impacts the final output of the RAG system. |
|
|
|
## Why is this important? |
|
|
|
Understanding and optimizing each component of the RAG pipeline is crucial because: |
|
|
|
1. It affects the accuracy and relevance of the information retrieved. |
|
2. It impacts the speed and efficiency of the system. |
|
3. It determines the scalability of your solution. |
|
4. It influences the overall quality of the generated responses. |
|
|
|
## Impact of Parameter Changes |
|
|
|
Changes in various parameters can have significant effects: |
|
|
|
- **Chunk Size**: Larger chunks provide more context but may reduce precision. Smaller chunks increase precision but may lose context. |
|
- **Overlap**: More overlap can help maintain context between chunks but increases computational load. |
|
- **Embedding Model**: Different models have varying performance across languages and domains. |
|
- **Vector Store**: Affects query speed and the types of searches you can perform. |
|
- **Retrieval Method**: Impacts the diversity and relevance of retrieved documents. |
|
|
|
## Detailed Parameter Explanations |
|
|
|
### Embedding Model |
|
|
|
The embedding model translates text into numerical vectors. The choice of model affects: |
|
|
|
- **Language Coverage**: Some models are monolingual, others are multilingual. |
|
- **Domain Specificity**: Models can be general or trained on specific domains (e.g., legal, medical). |
|
- **Vector Dimensions**: Higher dimensions can capture more information but require more storage and computation. |
|
|
|
#### Vocabulary Size |
|
|
|
The vocab size refers to the number of unique tokens the model recognizes. It's important because: |
|
|
|
- It affects the model's ability to handle rare words or specialized terminology. |
|
- Larger vocabs can lead to better performance but require more memory. |
|
- It impacts the model's performance across different languages (larger vocabs are often better for multilingual models). |
|
|
|
### Split Strategy |
|
|
|
- **Token**: Splits based on a fixed number of tokens. Good for maintaining consistent chunk sizes. |
|
- **Recursive**: Splits based on content, trying to maintain semantic coherence. Better for preserving context. |
|
|
|
### Vector Store Type |
|
|
|
- **FAISS**: Fast, memory-efficient. Good for large-scale similarity search. |
|
- **Chroma**: Offers additional features like metadata filtering. Good for more complex querying needs. |
|
|
|
### Search Type |
|
|
|
- **Similarity**: Returns the most similar documents. Fast and straightforward. |
|
- **MMR (Maximum Marginal Relevance)**: Balances relevance with diversity in results. Useful for getting a broader perspective. |
|
|
|
## MTEB (Massive Text Embedding Benchmark) |
|
|
|
MTEB is a comprehensive benchmark for evaluating text embedding models across a wide range of tasks and languages. It's useful for: |
|
|
|
- Comparing the performance of different embedding models. |
|
- Understanding how models perform on specific tasks (e.g., classification, clustering, retrieval). |
|
- Selecting the best model for your specific use case. |
|
|
|
### Finding Embeddings on MTEB Leaderboard |
|
|
|
To find suitable embeddings using the MTEB leaderboard (https://huggingface.co/spaces/mteb/leaderboard): |
|
|
|
1. Look at the "Avg" column for overall performance across all tasks. |
|
2. Check performance on specific task types relevant to your use case (e.g., Retrieval, Classification). |
|
3. Consider the model size and inference speed for your deployment constraints. |
|
4. Look at language-specific scores if you're working with non-English text. |
|
5. Click on model names to get more details and links to the model pages on Hugging Face. |
|
|
|
When selecting a model, balance performance with practical considerations like model size, inference speed, and specific task performance relevant to your application. |
|
|
|
By understanding these concepts and parameters, you can make informed decisions when using the Embedding Comparison Tool and optimize your RAG system for your specific needs. |
|
|
|
## Using the Embedding Comparison Tool |
|
|
|
Now that you understand the underlying concepts, here's how to use the tool: |
|
|
|
1. **File Upload**: Optionally upload a file (PDF, DOCX, or TXT) or leave it empty to use files in the `./files` directory. |
|
|
|
2. **Search Query**: Enter the search query you want to use for retrieving relevant documents. |
|
|
|
3. **Embedding Model Types**: Select one or more embedding model types (HuggingFace, OpenAI, Cohere). |
|
|
|
4. **Embedding Models**: Choose specific models for each selected model type. |
|
|
|
5. **Split Strategy**: Select either 'token' or 'recursive' for text splitting. |
|
|
|
6. **Chunk Size**: Set the size of text chunks (100-1000). |
|
|
|
7. **Overlap Size**: Set the overlap between chunks (0-100). |
|
|
|
8. **Custom Split Separators**: Optionally enter custom separators for text splitting. |
|
|
|
9. **Vector Store Type**: Choose between FAISS and Chroma for storing vectors. |
|
|
|
10. **Search Type**: Select 'similarity' or 'mmr' (Maximum Marginal Relevance) search. |
|
|
|
11. **Top K**: Set the number of top results to retrieve (1-10). |
|
|
|
After setting these parameters, click "Submit" to run the comparison. The results will be displayed in two tables: |
|
|
|
- **Results**: Shows the retrieved document contents and metadata for each model. |
|
- **Statistics**: Provides performance metrics and settings for each model. |
|
|
|
You can download the results as CSV files for further analysis. |
|
|
|
|
|
## Useful Resources and Links |
|
|
|
Here are some valuable resources to help you better understand and work with embeddings, retrieval systems, and natural language processing: |
|
|
|
### Embeddings and Vector Databases |
|
- [Understanding Embeddings](https://www.tensorflow.org/text/guide/word_embeddings): A guide by TensorFlow on word embeddings |
|
- [FAISS: A Library for Efficient Similarity Search](https://github.com/facebookresearch/faiss): Facebook AI's vector similarity search library |
|
- [Chroma: The AI-native open-source embedding database](https://www.trychroma.com/): An embedding database designed for AI applications |
|
|
|
### Natural Language Processing |
|
- [NLTK (Natural Language Toolkit)](https://www.nltk.org/): A leading platform for building Python programs to work with human language data |
|
- [spaCy](https://spacy.io/): Industrial-strength Natural Language Processing in Python |
|
- [Hugging Face Transformers](https://huggingface.co/transformers/): State-of-the-art Natural Language Processing for PyTorch and TensorFlow 2.0 |
|
|
|
### Retrieval-Augmented Generation (RAG) |
|
- [LangChain](https://python.langchain.com/docs/get_started/introduction): A framework for developing applications powered by language models |
|
- [OpenAI's RAG Tutorial](https://platform.openai.com/docs/tutorials/web-qa-embeddings): A guide on building a QA system with embeddings |
|
|
|
### German Language Processing |
|
- [Kölner Phonetik](https://en.wikipedia.org/wiki/Cologne_phonetics): Information about the Kölner Phonetik algorithm |
|
- [German NLP Resources](https://github.com/adbar/German-NLP): A curated list of open-access resources for German NLP |
|
|
|
### Benchmarks and Evaluation |
|
- [MTEB Leaderboard](https://huggingface.co/spaces/mteb/leaderboard): Massive Text Embedding Benchmark leaderboard |
|
- [GLUE Benchmark](https://gluebenchmark.com/): General Language Understanding Evaluation benchmark |
|
|
|
### Tools and Libraries |
|
- [Gensim](https://radimrehurek.com/gensim/): Topic modelling for humans |
|
- [Sentence-Transformers](https://www.sbert.net/): A Python framework for state-of-the-art sentence, text and image embeddings |
|
|
|
|
|
Experiment with different settings to find the best combination for your specific use case! |
|
""" |
|
|
|
|
|
iface = gr.TabbedInterface( |
|
[iface, gr.Markdown(tutorial_md)], |
|
["Embedding Comparison", "Tutorial"] |
|
) |
|
|
|
iface.launch(share=True) |