Chris4K's picture
Update app.py
7fad639 verified
raw
history blame
4.32 kB
import os
import time
import pdfplumber
import docx
import nltk
import gradio as gr
from langchain_huggingface import HuggingFaceEmbeddings
from langchain_community.embeddings import (
OpenAIEmbeddings,
CohereEmbeddings,
)
from langchain_openai import OpenAIEmbeddings
from langchain_community.vectorstores import FAISS, Chroma
from langchain_text_splitters import (
RecursiveCharacterTextSplitter,
TokenTextSplitter,
)
from typing import List, Dict, Any
import pandas as pd
# ... (previous code remains the same) ...
def compare_embeddings(file, query, model_types, model_names, split_strategy, chunk_size, overlap_size, custom_separators, vector_store_type, search_type, top_k):
all_results = []
all_stats = []
settings = {
"split_strategy": split_strategy,
"chunk_size": chunk_size,
"overlap_size": overlap_size,
"custom_separators": custom_separators,
"vector_store_type": vector_store_type,
"search_type": search_type,
"top_k": top_k
}
for model_type, model_name in zip(model_types, model_names):
chunks, embedding_model, num_tokens = process_files(
file.name if file else None,
model_type,
model_name,
split_strategy,
chunk_size,
overlap_size,
custom_separators.split(',') if custom_separators else None
)
results, search_time, vector_store = search_embeddings(
chunks,
embedding_model,
vector_store_type,
search_type,
query,
top_k
)
stats = calculate_statistics(results, search_time, vector_store, num_tokens, embedding_model)
stats["model"] = f"{model_type} - {model_name}"
stats.update(settings)
formatted_results = format_results(results, stats)
all_results.extend(formatted_results)
all_stats.append(stats)
results_df = pd.DataFrame(all_results)
stats_df = pd.DataFrame(all_stats)
return results_df, stats_df
def format_results(results, stats):
formatted_results = []
for doc in results:
result = {
"Model": stats["model"],
"Content": doc.page_content,
**doc.metadata,
**{k: v for k, v in stats.items() if k not in ["model"]}
}
formatted_results.append(result)
return formatted_results
# Gradio interface
def launch_interface(share=True):
iface = gr.Interface(
fn=compare_embeddings,
inputs=[
gr.File(label="Upload File (Optional)"),
gr.Textbox(label="Search Query"),
gr.CheckboxGroup(choices=list(MODELS.keys()), label="Embedding Model Types", value=["HuggingFace"]),
gr.CheckboxGroup(choices=[model for models in MODELS.values() for model in models], label="Embedding Models", value=["e5-base-de"]),
gr.Radio(choices=["token", "recursive"], label="Split Strategy", value="recursive"),
gr.Slider(100, 1000, step=100, value=500, label="Chunk Size"),
gr.Slider(0, 100, step=10, value=50, label="Overlap Size"),
gr.Textbox(label="Custom Split Separators (comma-separated, optional)"),
gr.Radio(choices=["FAISS", "Chroma"], label="Vector Store Type", value="FAISS"),
gr.Radio(choices=["similarity", "mmr"], label="Search Type", value="similarity"),
gr.Slider(1, 10, step=1, value=5, label="Top K")
],
outputs=[
gr.Dataframe(label="Results", interactive=False),
gr.Dataframe(label="Statistics", interactive=False)
],
title="Embedding Comparison Tool",
description="Compare different embedding models and retrieval strategies",
examples=[
["example.pdf", "What is machine learning?", ["HuggingFace"], ["e5-base-de"], "recursive", 500, 50, "", "FAISS", "similarity", 5]
],
allow_flagging="never"
)
tutorial_md = """
# Embedding Comparison Tool Tutorial
... (tutorial content remains the same) ...
"""
iface = gr.TabbedInterface(
[iface, gr.Markdown(tutorial_md)],
["Embedding Comparison", "Tutorial"]
)
iface.launch(share=share)
if __name__ == "__main__":
launch_interface()