File size: 9,161 Bytes
ccb8edf e9d5e9c 6b52825 84cb849 2618588 84cb849 8d0bee3 b35adb8 84cb849 9efbb97 84cb849 9efbb97 84cb849 9efbb97 84cb849 9efbb97 84cb849 9efbb97 84cb849 9efbb97 84cb849 9efbb97 1754322 9efbb97 fed8ef0 9efbb97 fed8ef0 9efbb97 7fad639 9efbb97 fed8ef0 ccb8edf 7fad639 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 |
import os
import time
import pdfplumber
import docx
import nltk
import gradio as gr
from langchain_huggingface import HuggingFaceEmbeddings
from langchain_community.embeddings import (
OpenAIEmbeddings,
CohereEmbeddings,
)
from langchain_openai import OpenAIEmbeddings
from langchain_community.vectorstores import FAISS, Chroma
from langchain_text_splitters import (
RecursiveCharacterTextSplitter,
TokenTextSplitter,
)
from typing import List, Dict, Any
import pandas as pd
nltk.download('punkt', quiet=True)
FILES_DIR = './files'
MODELS = {
'HuggingFace': {
'e5-base-de': "danielheinz/e5-base-sts-en-de",
'paraphrase-miniLM': "paraphrase-multilingual-MiniLM-L12-v2",
'paraphrase-mpnet': "paraphrase-multilingual-mpnet-base-v2",
'gte-large': "gte-large",
'gbert-base': "gbert-base"
},
'OpenAI': {
'text-embedding-ada-002': "text-embedding-ada-002"
},
'Cohere': {
'embed-multilingual-v2.0': "embed-multilingual-v2.0"
}
}
class FileHandler:
@staticmethod
def extract_text(file_path):
ext = os.path.splitext(file_path)[-1].lower()
if ext == '.pdf':
return FileHandler._extract_from_pdf(file_path)
elif ext == '.docx':
return FileHandler._extract_from_docx(file_path)
elif ext == '.txt':
return FileHandler._extract_from_txt(file_path)
else:
raise ValueError(f"Unsupported file type: {ext}")
@staticmethod
def _extract_from_pdf(file_path):
with pdfplumber.open(file_path) as pdf:
return ' '.join([page.extract_text() for page in pdf.pages])
@staticmethod
def _extract_from_docx(file_path):
doc = docx.Document(file_path)
return ' '.join([para.text for para in doc.paragraphs])
@staticmethod
def _extract_from_txt(file_path):
with open(file_path, 'r', encoding='utf-8') as f:
return f.read()
def get_embedding_model(model_type, model_name):
if model_type == 'HuggingFace':
return HuggingFaceEmbeddings(model_name=MODELS[model_type][model_name])
elif model_type == 'OpenAI':
return OpenAIEmbeddings(model=MODELS[model_type][model_name])
elif model_type == 'Cohere':
return CohereEmbeddings(model=MODELS[model_type][model_name])
else:
raise ValueError(f"Unsupported model type: {model_type}")
def get_text_splitter(split_strategy, chunk_size, overlap_size, custom_separators=None):
if split_strategy == 'token':
return TokenTextSplitter(chunk_size=chunk_size, chunk_overlap=overlap_size)
elif split_strategy == 'recursive':
return RecursiveCharacterTextSplitter(
chunk_size=chunk_size,
chunk_overlap=overlap_size,
separators=custom_separators or ["\n\n", "\n", " ", ""]
)
else:
raise ValueError(f"Unsupported split strategy: {split_strategy}")
def get_vector_store(store_type, texts, embedding_model):
if store_type == 'FAISS':
return FAISS.from_texts(texts, embedding_model)
elif store_type == 'Chroma':
return Chroma.from_texts(texts, embedding_model)
else:
raise ValueError(f"Unsupported vector store type: {store_type}")
def get_retriever(vector_store, search_type, search_kwargs=None):
if search_type == 'similarity':
return vector_store.as_retriever(search_type="similarity", search_kwargs=search_kwargs)
elif search_type == 'mmr':
return vector_store.as_retriever(search_type="mmr", search_kwargs=search_kwargs)
else:
raise ValueError(f"Unsupported search type: {search_type}")
def process_files(file_path, model_type, model_name, split_strategy, chunk_size, overlap_size, custom_separators):
if file_path:
text = FileHandler.extract_text(file_path)
else:
text = ""
for file in os.listdir(FILES_DIR):
file_path = os.path.join(FILES_DIR, file)
text += FileHandler.extract_text(file_path)
text_splitter = get_text_splitter(split_strategy, chunk_size, overlap_size, custom_separators)
chunks = text_splitter.split_text(text)
embedding_model = get_embedding_model(model_type, model_name)
return chunks, embedding_model, len(text.split())
def search_embeddings(chunks, embedding_model, vector_store_type, search_type, query, top_k):
vector_store = get_vector_store(vector_store_type, chunks, embedding_model)
retriever = get_retriever(vector_store, search_type, {"k": top_k})
start_time = time.time()
results = retriever.get_relevant_documents(query)
end_time = time.time()
return results, end_time - start_time, vector_store
def calculate_statistics(results, search_time, vector_store, num_tokens, embedding_model):
return {
"num_results": len(results),
"avg_content_length": sum(len(doc.page_content) for doc in results) / len(results) if results else 0,
"search_time": search_time,
"vector_store_size": vector_store._index.ntotal if hasattr(vector_store, '_index') else "N/A",
"num_documents": len(vector_store.docstore._dict),
"num_tokens": num_tokens,
"embedding_vocab_size": embedding_model.client.get_vocab_size() if hasattr(embedding_model, 'client') and hasattr(embedding_model.client, 'get_vocab_size') else "N/A"
}
def compare_embeddings(file, query, model_types, model_names, split_strategy, chunk_size, overlap_size, custom_separators, vector_store_type, search_type, top_k):
all_results = []
all_stats = []
settings = {
"split_strategy": split_strategy,
"chunk_size": chunk_size,
"overlap_size": overlap_size,
"custom_separators": custom_separators,
"vector_store_type": vector_store_type,
"search_type": search_type,
"top_k": top_k
}
for model_type, model_name in zip(model_types, model_names):
chunks, embedding_model, num_tokens = process_files(
file.name if file else None,
model_type,
model_name,
split_strategy,
chunk_size,
overlap_size,
custom_separators.split(',') if custom_separators else None
)
results, search_time, vector_store = search_embeddings(
chunks,
embedding_model,
vector_store_type,
search_type,
query,
top_k
)
stats = calculate_statistics(results, search_time, vector_store, num_tokens, embedding_model)
stats["model"] = f"{model_type} - {model_name}"
stats.update(settings)
formatted_results = format_results(results, stats)
all_results.extend(formatted_results)
all_stats.append(stats)
results_df = pd.DataFrame(all_results)
stats_df = pd.DataFrame(all_stats)
return results_df, stats_df
def format_results(results, stats):
formatted_results = []
for doc in results:
result = {
"Model": stats["model"],
"Content": doc.page_content,
**doc.metadata,
**{k: v for k, v in stats.items() if k not in ["model"]}
}
formatted_results.append(result)
return formatted_results
# Gradio interface
def launch_interface(share=True):
iface = gr.Interface(
fn=compare_embeddings,
inputs=[
gr.File(label="Upload File (Optional)"),
gr.Textbox(label="Search Query"),
gr.CheckboxGroup(choices=list(MODELS.keys()), label="Embedding Model Types", value=["HuggingFace"]),
gr.CheckboxGroup(choices=[model for models in MODELS.values() for model in models], label="Embedding Models", value=["e5-base-de"]),
gr.Radio(choices=["token", "recursive"], label="Split Strategy", value="recursive"),
gr.Slider(100, 1000, step=100, value=500, label="Chunk Size"),
gr.Slider(0, 100, step=10, value=50, label="Overlap Size"),
gr.Textbox(label="Custom Split Separators (comma-separated, optional)"),
gr.Radio(choices=["FAISS", "Chroma"], label="Vector Store Type", value="FAISS"),
gr.Radio(choices=["similarity", "mmr"], label="Search Type", value="similarity"),
gr.Slider(1, 10, step=1, value=5, label="Top K")
],
outputs=[
gr.Dataframe(label="Results", interactive=False),
gr.Dataframe(label="Statistics", interactive=False)
],
title="Embedding Comparison Tool",
description="Compare different embedding models and retrieval strategies",
examples=[
["example.pdf", "What is machine learning?", ["HuggingFace"], ["e5-base-de"], "recursive", 500, 50, "", "FAISS", "similarity", 5]
],
allow_flagging="never"
)
tutorial_md = """
# Embedding Comparison Tool Tutorial
... (tutorial content remains the same) ...
"""
iface = gr.TabbedInterface(
[iface, gr.Markdown(tutorial_md)],
["Embedding Comparison", "Tutorial"]
)
iface.launch(share=share)
if __name__ == "__main__":
launch_interface() |