Spaces:
Build error
Build error
Update app.py
Browse files
app.py
CHANGED
|
@@ -215,17 +215,9 @@ def custom_tokenize(text, tokenizer):
|
|
| 215 |
return tokenizer.encode(text).tokens
|
| 216 |
|
| 217 |
# Embedding and Vector Store
|
| 218 |
-
|
| 219 |
-
|
| 220 |
-
|
| 221 |
-
if model_type == 'HuggingFace':
|
| 222 |
-
return HuggingFaceEmbeddings(model_name=model_path)
|
| 223 |
-
elif model_type == 'OpenAI':
|
| 224 |
-
return OpenAIEmbeddings(model=model_path)
|
| 225 |
-
elif model_type == 'Cohere':
|
| 226 |
-
return CohereEmbeddings(model=model_path)
|
| 227 |
-
else:
|
| 228 |
-
raise ValueError(f"Unsupported model type: {model_type}")
|
| 229 |
|
| 230 |
def get_text_splitter(split_strategy, chunk_size, overlap_size, custom_separators=None):
|
| 231 |
if split_strategy == 'token':
|
|
@@ -239,9 +231,35 @@ def get_text_splitter(split_strategy, chunk_size, overlap_size, custom_separator
|
|
| 239 |
else:
|
| 240 |
raise ValueError(f"Unsupported split strategy: {split_strategy}")
|
| 241 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 242 |
def get_vector_store(vector_store_type, chunks, embedding_model):
|
| 243 |
chunks_tuple = tuple(chunks)
|
| 244 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 245 |
|
| 246 |
def custom_similarity(query_embedding, doc_embedding, query, doc_text, phonetic_weight=0.3):
|
| 247 |
embedding_sim = np.dot(query_embedding, doc_embedding) / (np.linalg.norm(query_embedding) * np.linalg.norm(doc_embedding))
|
|
@@ -259,18 +277,9 @@ def _create_vector_store(vector_store_type, chunks_tuple, embedding_model):
|
|
| 259 |
else:
|
| 260 |
raise ValueError(f"Unsupported vector store type: {vector_store_type}")
|
| 261 |
|
| 262 |
-
def get_retriever(vector_store, search_type, search_kwargs):
|
| 263 |
-
if search_type == 'similarity':
|
| 264 |
-
return vector_store.as_retriever(search_type="similarity", search_kwargs=search_kwargs)
|
| 265 |
-
elif search_type == 'mmr':
|
| 266 |
-
return vector_store.as_retriever(search_type="mmr", search_kwargs=search_kwargs)
|
| 267 |
-
elif search_type == 'custom':
|
| 268 |
-
return vector_store.as_retriever(search_type="similarity", search_kwargs=search_kwargs)
|
| 269 |
-
else:
|
| 270 |
-
raise ValueError(f"Unsupported search type: {search_type}")
|
| 271 |
|
| 272 |
# Main Processing Functions
|
| 273 |
-
def process_files(file_path, model_type, model_name, split_strategy, chunk_size, overlap_size, custom_separators, lang='german', custom_tokenizer_file=None, custom_tokenizer_model=None, custom_tokenizer_vocab_size=10000, custom_tokenizer_special_tokens=None):
|
| 274 |
if file_path:
|
| 275 |
text = FileHandler.extract_text(file_path)
|
| 276 |
else:
|
|
@@ -282,7 +291,7 @@ def process_files(file_path, model_type, model_name, split_strategy, chunk_size,
|
|
| 282 |
if custom_tokenizer_file:
|
| 283 |
tokenizer = create_custom_tokenizer(custom_tokenizer_file, custom_tokenizer_model, custom_tokenizer_vocab_size, custom_tokenizer_special_tokens)
|
| 284 |
text = ' '.join(custom_tokenize(text, tokenizer))
|
| 285 |
-
|
| 286 |
text = preprocess_text(text, lang)
|
| 287 |
|
| 288 |
text_splitter = get_text_splitter(split_strategy, chunk_size, overlap_size, custom_separators)
|
|
@@ -292,8 +301,8 @@ def process_files(file_path, model_type, model_name, split_strategy, chunk_size,
|
|
| 292 |
|
| 293 |
return chunks, embedding_model, len(text.split())
|
| 294 |
|
| 295 |
-
def search_embeddings(chunks, embedding_model, vector_store_type, search_type, query, top_k, lang='german', phonetic_weight=0.3):
|
| 296 |
-
preprocessed_query = preprocess_text(query, lang)
|
| 297 |
|
| 298 |
vector_store = get_vector_store(vector_store_type, chunks, embedding_model)
|
| 299 |
retriever = get_retriever(vector_store, search_type, {"k": top_k})
|
|
@@ -303,8 +312,11 @@ def search_embeddings(chunks, embedding_model, vector_store_type, search_type, q
|
|
| 303 |
|
| 304 |
def score_result(doc):
|
| 305 |
similarity_score = vector_store.similarity_search_with_score(doc.page_content, k=1)[0][1]
|
| 306 |
-
|
| 307 |
-
|
|
|
|
|
|
|
|
|
|
| 308 |
|
| 309 |
results = sorted(results, key=score_result, reverse=True)
|
| 310 |
end_time = time.time()
|
|
@@ -323,6 +335,8 @@ def search_embeddings(chunks, embedding_model, vector_store_type, search_type, q
|
|
| 323 |
|
| 324 |
return results_df, end_time - start_time, vector_store, results
|
| 325 |
|
|
|
|
|
|
|
| 326 |
# Evaluation Metrics
|
| 327 |
# ... (previous code remains the same)
|
| 328 |
|
|
|
|
| 215 |
return tokenizer.encode(text).tokens
|
| 216 |
|
| 217 |
# Embedding and Vector Store
|
| 218 |
+
#@lru_cache(maxsize=None)
|
| 219 |
+
|
| 220 |
+
# Helper functions
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 221 |
|
| 222 |
def get_text_splitter(split_strategy, chunk_size, overlap_size, custom_separators=None):
|
| 223 |
if split_strategy == 'token':
|
|
|
|
| 231 |
else:
|
| 232 |
raise ValueError(f"Unsupported split strategy: {split_strategy}")
|
| 233 |
|
| 234 |
+
def get_embedding_model(model_type, model_name):
|
| 235 |
+
model_path = model_manager.get_model(model_type, model_name)
|
| 236 |
+
if model_type == 'HuggingFace':
|
| 237 |
+
return HuggingFaceEmbeddings(model_name=model_path)
|
| 238 |
+
elif model_type == 'OpenAI':
|
| 239 |
+
return OpenAIEmbeddings(model=model_path)
|
| 240 |
+
elif model_type == 'Cohere':
|
| 241 |
+
return CohereEmbeddings(model=model_path)
|
| 242 |
+
else:
|
| 243 |
+
raise ValueError(f"Unsupported model type: {model_type}")
|
| 244 |
+
|
| 245 |
def get_vector_store(vector_store_type, chunks, embedding_model):
|
| 246 |
chunks_tuple = tuple(chunks)
|
| 247 |
+
if vector_store_type == 'FAISS':
|
| 248 |
+
return FAISS.from_texts(chunks, embedding_model)
|
| 249 |
+
elif vector_store_type == 'Chroma':
|
| 250 |
+
return Chroma.from_texts(chunks, embedding_model)
|
| 251 |
+
else:
|
| 252 |
+
raise ValueError(f"Unsupported vector store type: {vector_store_type}")
|
| 253 |
+
|
| 254 |
+
def get_retriever(vector_store, search_type, search_kwargs):
|
| 255 |
+
if search_type == 'similarity':
|
| 256 |
+
return vector_store.as_retriever(search_type="similarity", search_kwargs=search_kwargs)
|
| 257 |
+
elif search_type == 'mmr':
|
| 258 |
+
return vector_store.as_retriever(search_type="mmr", search_kwargs=search_kwargs)
|
| 259 |
+
elif search_type == 'custom':
|
| 260 |
+
return vector_store.as_retriever(search_type="similarity", search_kwargs=search_kwargs)
|
| 261 |
+
else:
|
| 262 |
+
raise ValueError(f"Unsupported search type: {search_type}")
|
| 263 |
|
| 264 |
def custom_similarity(query_embedding, doc_embedding, query, doc_text, phonetic_weight=0.3):
|
| 265 |
embedding_sim = np.dot(query_embedding, doc_embedding) / (np.linalg.norm(query_embedding) * np.linalg.norm(doc_embedding))
|
|
|
|
| 277 |
else:
|
| 278 |
raise ValueError(f"Unsupported vector store type: {vector_store_type}")
|
| 279 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 280 |
|
| 281 |
# Main Processing Functions
|
| 282 |
+
def process_files(file_path, model_type, model_name, split_strategy, chunk_size, overlap_size, custom_separators, lang='german', apply_preprocessing=True, custom_tokenizer_file=None, custom_tokenizer_model=None, custom_tokenizer_vocab_size=10000, custom_tokenizer_special_tokens=None):
|
| 283 |
if file_path:
|
| 284 |
text = FileHandler.extract_text(file_path)
|
| 285 |
else:
|
|
|
|
| 291 |
if custom_tokenizer_file:
|
| 292 |
tokenizer = create_custom_tokenizer(custom_tokenizer_file, custom_tokenizer_model, custom_tokenizer_vocab_size, custom_tokenizer_special_tokens)
|
| 293 |
text = ' '.join(custom_tokenize(text, tokenizer))
|
| 294 |
+
elif apply_preprocessing:
|
| 295 |
text = preprocess_text(text, lang)
|
| 296 |
|
| 297 |
text_splitter = get_text_splitter(split_strategy, chunk_size, overlap_size, custom_separators)
|
|
|
|
| 301 |
|
| 302 |
return chunks, embedding_model, len(text.split())
|
| 303 |
|
| 304 |
+
def search_embeddings(chunks, embedding_model, vector_store_type, search_type, query, top_k, lang='german', apply_phonetic=True, phonetic_weight=0.3):
|
| 305 |
+
preprocessed_query = preprocess_text(query, lang) if apply_phonetic else query
|
| 306 |
|
| 307 |
vector_store = get_vector_store(vector_store_type, chunks, embedding_model)
|
| 308 |
retriever = get_retriever(vector_store, search_type, {"k": top_k})
|
|
|
|
| 312 |
|
| 313 |
def score_result(doc):
|
| 314 |
similarity_score = vector_store.similarity_search_with_score(doc.page_content, k=1)[0][1]
|
| 315 |
+
if apply_phonetic:
|
| 316 |
+
phonetic_score = phonetic_match(doc.page_content, query)
|
| 317 |
+
return (1 - phonetic_weight) * similarity_score + phonetic_weight * phonetic_score
|
| 318 |
+
else:
|
| 319 |
+
return similarity_score
|
| 320 |
|
| 321 |
results = sorted(results, key=score_result, reverse=True)
|
| 322 |
end_time = time.time()
|
|
|
|
| 335 |
|
| 336 |
return results_df, end_time - start_time, vector_store, results
|
| 337 |
|
| 338 |
+
|
| 339 |
+
|
| 340 |
# Evaluation Metrics
|
| 341 |
# ... (previous code remains the same)
|
| 342 |
|