Spaces:
Build error
Build error
import os | |
import time | |
import pdfplumber | |
import docx | |
import nltk | |
import gradio as gr | |
from langchain_huggingface import HuggingFaceEmbeddings | |
from langchain_community.embeddings import ( | |
OpenAIEmbeddings, | |
CohereEmbeddings, | |
) | |
from langchain_openai import OpenAIEmbeddings | |
from langchain_community.vectorstores import FAISS, Chroma | |
from langchain_text_splitters import ( | |
RecursiveCharacterTextSplitter, | |
TokenTextSplitter, | |
) | |
from typing import List, Dict, Any | |
import pandas as pd | |
# ... (previous code remains the same) ... | |
def compare_embeddings(file, query, model_types, model_names, split_strategy, chunk_size, overlap_size, custom_separators, vector_store_type, search_type, top_k): | |
all_results = [] | |
all_stats = [] | |
settings = { | |
"split_strategy": split_strategy, | |
"chunk_size": chunk_size, | |
"overlap_size": overlap_size, | |
"custom_separators": custom_separators, | |
"vector_store_type": vector_store_type, | |
"search_type": search_type, | |
"top_k": top_k | |
} | |
for model_type, model_name in zip(model_types, model_names): | |
chunks, embedding_model, num_tokens = process_files( | |
file.name if file else None, | |
model_type, | |
model_name, | |
split_strategy, | |
chunk_size, | |
overlap_size, | |
custom_separators.split(',') if custom_separators else None | |
) | |
results, search_time, vector_store = search_embeddings( | |
chunks, | |
embedding_model, | |
vector_store_type, | |
search_type, | |
query, | |
top_k | |
) | |
stats = calculate_statistics(results, search_time, vector_store, num_tokens, embedding_model) | |
stats["model"] = f"{model_type} - {model_name}" | |
stats.update(settings) | |
formatted_results = format_results(results, stats) | |
all_results.extend(formatted_results) | |
all_stats.append(stats) | |
results_df = pd.DataFrame(all_results) | |
stats_df = pd.DataFrame(all_stats) | |
return results_df, stats_df | |
def format_results(results, stats): | |
formatted_results = [] | |
for doc in results: | |
result = { | |
"Model": stats["model"], | |
"Content": doc.page_content, | |
**doc.metadata, | |
**{k: v for k, v in stats.items() if k not in ["model"]} | |
} | |
formatted_results.append(result) | |
return formatted_results | |
# Gradio interface | |
def launch_interface(share=True): | |
iface = gr.Interface( | |
fn=compare_embeddings, | |
inputs=[ | |
gr.File(label="Upload File (Optional)"), | |
gr.Textbox(label="Search Query"), | |
gr.CheckboxGroup(choices=list(MODELS.keys()), label="Embedding Model Types", value=["HuggingFace"]), | |
gr.CheckboxGroup(choices=[model for models in MODELS.values() for model in models], label="Embedding Models", value=["e5-base-de"]), | |
gr.Radio(choices=["token", "recursive"], label="Split Strategy", value="recursive"), | |
gr.Slider(100, 1000, step=100, value=500, label="Chunk Size"), | |
gr.Slider(0, 100, step=10, value=50, label="Overlap Size"), | |
gr.Textbox(label="Custom Split Separators (comma-separated, optional)"), | |
gr.Radio(choices=["FAISS", "Chroma"], label="Vector Store Type", value="FAISS"), | |
gr.Radio(choices=["similarity", "mmr"], label="Search Type", value="similarity"), | |
gr.Slider(1, 10, step=1, value=5, label="Top K") | |
], | |
outputs=[ | |
gr.Dataframe(label="Results", interactive=False), | |
gr.Dataframe(label="Statistics", interactive=False) | |
], | |
title="Embedding Comparison Tool", | |
description="Compare different embedding models and retrieval strategies", | |
examples=[ | |
["example.pdf", "What is machine learning?", ["HuggingFace"], ["e5-base-de"], "recursive", 500, 50, "", "FAISS", "similarity", 5] | |
], | |
allow_flagging="never" | |
) | |
tutorial_md = """ | |
# Embedding Comparison Tool Tutorial | |
... (tutorial content remains the same) ... | |
""" | |
iface = gr.TabbedInterface( | |
[iface, gr.Markdown(tutorial_md)], | |
["Embedding Comparison", "Tutorial"] | |
) | |
iface.launch(share=share) | |
if __name__ == "__main__": | |
launch_interface() |