File size: 5,348 Bytes
ccb8edf
 
 
 
 
 
 
 
80f5976
15b9e99
ccb8edf
 
 
 
 
 
613421b
 
 
8d0bee3
 
 
ccb8edf
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1449a38
 
 
ccb8edf
 
 
 
 
 
 
 
1449a38
80f5976
 
ccb8edf
 
 
 
1449a38
 
ccb8edf
1449a38
ccb8edf
 
 
 
 
 
1449a38
 
 
 
 
ccb8edf
 
 
 
 
b18d63d
1449a38
f5be605
e267239
1449a38
 
 
d2631fa
 
 
 
 
 
f5be605
e267239
ccb8edf
 
 
 
 
 
 
e267239
ccb8edf
 
 
 
 
 
 
b68ed39
ccb8edf
 
6aea22e
379c0eb
6aea22e
 
ccb8edf
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
import os
import time
import pdfplumber
import docx
import nltk
import gradio as gr
from langchain.embeddings import HuggingFaceEmbeddings
from langchain.vectorstores import FAISS
from langchain_text_splitters import RecursiveCharacterTextSplitter
from langchain_text_splitters import TokenTextSplitter
from sentence_transformers import SentenceTransformer
from transformers import AutoTokenizer
from nltk import sent_tokenize
from typing import List, Tuple
from transformers import AutoModel, AutoTokenizer

#import spacy
#spacy.cli.download("en_core_web_sm")  # Ensure the model is available
#nlp = spacy.load("en_core_web_sm")    # Load the model



# Ensure nltk sentence tokenizer is downloaded
nltk.download('punkt')

FILES_DIR = './files'

# Supported embedding models
MODELS = {
    'e5-base': "danielheinz/e5-base-sts-en-de",
    'multilingual-e5-base': "multilingual-e5-base",
    'paraphrase-miniLM': "paraphrase-multilingual-MiniLM-L12-v2",
    'paraphrase-mpnet': "paraphrase-multilingual-mpnet-base-v2",
    'gte-large': "gte-large",
    'gbert-base': "gbert-base"
}

class FileHandler:
    @staticmethod
    def extract_text(file_path):
        ext = os.path.splitext(file_path)[-1].lower()
        if ext == '.pdf':
            return FileHandler._extract_from_pdf(file_path)
        elif ext == '.docx':
            return FileHandler._extract_from_docx(file_path)
        elif ext == '.txt':
            return FileHandler._extract_from_txt(file_path)
        else:
            raise ValueError(f"Unsupported file type: {ext}")

    @staticmethod
    def _extract_from_pdf(file_path):
        with pdfplumber.open(file_path) as pdf:
            return ' '.join([page.extract_text() for page in pdf.pages])

    @staticmethod
    def _extract_from_docx(file_path):
        doc = docx.Document(file_path)
        return ' '.join([para.text for para in doc.paragraphs])

    @staticmethod
    def _extract_from_txt(file_path):
        with open(file_path, 'r', encoding='utf-8') as f:
            return f.read()

class EmbeddingModel:
    def __init__(self, model_name, max_tokens=None):
        self.model = HuggingFaceEmbeddings(model_name=model_name)
        self.max_tokens = max_tokens

    def embed(self, chunks: List[str]):
        # Embed the list of chunks
        return self.model.embed_documents(chunks)

def process_files(model_name, split_strategy, chunk_size=500, overlap_size=50, max_tokens=None):
    # File processing
    text = ""
    for file in os.listdir(FILES_DIR):
        file_path = os.path.join(FILES_DIR, file)
        text += FileHandler.extract_text(file_path)

    # Split text into chunks
    if split_strategy == 'token':
        splitter = TokenTextSplitter(chunk_size=chunk_size, chunk_overlap=overlap_size)
    else:
        splitter = RecursiveCharacterTextSplitter(chunk_size=chunk_size, chunk_overlap=overlap_size)
    
    chunks = splitter.split_text(text)
    
    # Embed chunks, not the full text
    model = EmbeddingModel(MODELS[model_name], max_tokens=max_tokens)
    embeddings = model.embed(chunks)
    
    return embeddings, chunks

def search_embeddings(query, model_name, top_k):
    model = HuggingFaceEmbeddings(model_name=MODELS[model_name])
    embeddings = model.embed_query(query)

    # Perform FAISS or other similarity-based search over embeddings
    # This part requires you to build and search a FAISS index with embeddings

    return embeddings  # You would likely return the top-k results here

def calculate_statistics(embeddings):
    # Return time taken, token count, etc.
    return {"tokens": len(embeddings), "time_taken": time.time()}

import shutil

def upload_file(file, model_name, split_strategy, chunk_size, overlap_size, max_tokens, query, top_k):
    # Ensure default values are set if None is passed
    chunk_size = int(chunk_size) if chunk_size else 100
    overlap_size = int(overlap_size) if overlap_size else 0

    # `file` in Gradio is a dict-like object with a 'name' key containing the file path
    file_path = file.name  # Get the file path from the Gradio `file` object

    # Copy the uploaded file content to a local directory
    destination_path = os.path.join(FILES_DIR, os.path.basename(file_path))
    shutil.copyfile(file_path, destination_path)  # Use shutil to copy the file

    # Process files and get embeddings
    embeddings, chunks = process_files(model_name, split_strategy, chunk_size, overlap_size, max_tokens)

    # Perform search
    results = search_embeddings(query, model_name, top_k)

    # Calculate statistics
    stats = calculate_statistics(embeddings)

    return {"results": results, "stats": stats}

# Gradio interface
iface = gr.Interface(
    fn=upload_file,
    inputs=[
        gr.File(label="Upload File"),
        gr.Textbox(label="Search Query"),
        gr.Dropdown(choices=list(MODELS.keys()), label="Embedding Model"),
        gr.Radio(choices=["sentence", "recursive"], label="Split Strategy"),
        gr.Slider(100, 1000, step=100, value=500, label="Chunk Size"),  # Ensure type is int
        gr.Slider(0, 100, step=10, value=50, label="Overlap Size"),  # Ensure type is int
        gr.Slider(50, 500, step=50, value=200, label="Max Tokens"),  # Ensure type is int
        gr.Slider(1, 10, step=1, value=5, label="Top K")  # Ensure type is int
    ],
    outputs="json"
)

iface.launch()