File size: 32,641 Bytes
f157a13 02c7af0 e6c24fd 02c7af0 e6c24fd 5d256ae f157a13 e6c24fd 02c7af0 f157a13 02c7af0 e6c24fd 02c7af0 e6c24fd 02c7af0 e6c24fd 02c7af0 5f82e6a 5d256ae 5f82e6a 5d256ae 5f82e6a 5d256ae 5f82e6a 5f76d0a 02c7af0 34a5af9 02c7af0 34a5af9 02c7af0 34a5af9 02c7af0 34a5af9 02c7af0 53c9557 e6c24fd 53c9557 e6c24fd 02c7af0 e6c24fd 02c7af0 e6c24fd 02c7af0 118bfa5 02c7af0 53c9557 02c7af0 008db80 02c7af0 008db80 02c7af0 008db80 02c7af0 008db80 02c7af0 c166286 02c7af0 c166286 02c7af0 c166286 02c7af0 c166286 02c7af0 c166286 02c7af0 c166286 02c7af0 c166286 02c7af0 c166286 02c7af0 c166286 5f82e6a c166286 02c7af0 5f82e6a 53c9557 5f82e6a 02c7af0 61f26f1 02c7af0 61f26f1 02c7af0 008db80 02c7af0 61f26f1 02c7af0 61f26f1 02c7af0 61f26f1 02c7af0 5f82e6a 02c7af0 5f82e6a 61f26f1 02c7af0 5f82e6a 02c7af0 5f82e6a 61f26f1 02c7af0 61f26f1 02c7af0 61f26f1 c166286 02c7af0 c166286 02c7af0 c166286 02c7af0 c166286 02c7af0 c166286 02c7af0 c166286 02c7af0 c166286 02c7af0 c166286 02c7af0 008db80 5f76d0a 02c7af0 c166286 02c7af0 c166286 5f76d0a 02c7af0 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 |
import spaces
import json
import math
import os
import traceback
from io import BytesIO
from typing import Any, Dict, List, Optional, Tuple
import re
import fitz # PyMuPDF
import gradio as gr
import requests
import torch
from huggingface_hub import snapshot_download
from PIL import Image, ImageDraw, ImageFont
from qwen_vl_utils import process_vision_info
from transformers import AutoModelForCausalLM, AutoProcessor
# Constants
MIN_PIXELS = 3136
MAX_PIXELS = 11289600
IMAGE_FACTOR = 28
# Prompts
prompt = """Please output the layout information from the PDF image, including each layout element's bbox, its category, and the corresponding text content within the bbox.
1. Bbox format: [x1, y1, x2, y2]
2. Layout Categories: The possible categories are ['Caption', 'Footnote', 'Formula', 'List-item', 'Page-footer', 'Page-header', 'Picture', 'Section-header', 'Table', 'Text', 'Title'].
3. Text Extraction & Formatting Rules:
- Picture: For the 'Picture' category, the text field should be omitted.
- Formula: Format its text as LaTeX.
- Table: Format its text as HTML.
- All Others (Text, Title, etc.): Format their text as Markdown.
4. Constraints:
- The output text must be the original text from the image, with no translation.
- All layout elements must be sorted according to human reading order.
5. Final Output: The entire output must be a single JSON object.
"""
# Utility functions
def round_by_factor(number: int, factor: int) -> int:
"""Returns the closest integer to 'number' that is divisible by 'factor'."""
return round(number / factor) * factor
def smart_resize(
height: int,
width: int,
factor: int = 28,
min_pixels: int = 3136,
max_pixels: int = 11289600,
):
"""Rescales the image so that the following conditions are met:
1. Both dimensions (height and width) are divisible by 'factor'.
2. The total number of pixels is within the range ['min_pixels', 'max_pixels'].
3. The aspect ratio of the image is maintained as closely as possible.
"""
if max(height, width) / min(height, width) > 200:
raise ValueError(
f"absolute aspect ratio must be smaller than 200, got {max(height, width) / min(height, width)}"
)
h_bar = max(factor, round_by_factor(height, factor))
w_bar = max(factor, round_by_factor(width, factor))
if h_bar * w_bar > max_pixels:
beta = math.sqrt((height * width) / max_pixels)
h_bar = round_by_factor(height / beta, factor)
w_bar = round_by_factor(width / beta, factor)
elif h_bar * w_bar < min_pixels:
beta = math.sqrt(min_pixels / (height * width))
h_bar = round_by_factor(height * beta, factor)
w_bar = round_by_factor(width * beta, factor)
return h_bar, w_bar
def fetch_image(image_input, min_pixels: int = None, max_pixels: int = None):
"""Fetch and process an image"""
if isinstance(image_input, str):
if image_input.startswith(("http://", "https://")):
response = requests.get(image_input)
image = Image.open(BytesIO(response.content)).convert('RGB')
else:
image = Image.open(image_input).convert('RGB')
elif isinstance(image_input, Image.Image):
image = image_input.convert('RGB')
else:
raise ValueError(f"Invalid image input type: {type(image_input)}")
if min_pixels is not None or max_pixels is not None:
min_pixels = min_pixels or MIN_PIXELS
max_pixels = max_pixels or MAX_PIXELS
height, width = smart_resize(
image.height,
image.width,
factor=IMAGE_FACTOR,
min_pixels=min_pixels,
max_pixels=max_pixels
)
image = image.resize((width, height), Image.LANCZOS)
return image
def load_images_from_pdf(pdf_path: str) -> List[Image.Image]:
"""Load images from PDF file"""
images = []
try:
pdf_document = fitz.open(pdf_path)
for page_num in range(len(pdf_document)):
page = pdf_document.load_page(page_num)
# Convert page to image
mat = fitz.Matrix(2.0, 2.0) # Increase resolution
pix = page.get_pixmap(matrix=mat)
img_data = pix.tobytes("ppm")
image = Image.open(BytesIO(img_data)).convert('RGB')
images.append(image)
pdf_document.close()
except Exception as e:
print(f"Error loading PDF: {e}")
return []
return images
def draw_layout_on_image(image: Image.Image, layout_data: List[Dict]) -> Image.Image:
"""Draw layout bounding boxes on image"""
img_copy = image.copy()
draw = ImageDraw.Draw(img_copy)
# Colors for different categories
colors = {
'Caption': '#FF6B6B',
'Footnote': '#4ECDC4',
'Formula': '#45B7D1',
'List-item': '#96CEB4',
'Page-footer': '#FFEAA7',
'Page-header': '#DDA0DD',
'Picture': '#FFD93D',
'Section-header': '#6C5CE7',
'Table': '#FD79A8',
'Text': '#74B9FF',
'Title': '#E17055'
}
try:
# Load a font
try:
font = ImageFont.truetype("/usr/share/fonts/truetype/dejavu/DejaVuSans-Bold.ttf", 12)
except Exception:
font = ImageFont.load_default()
for item in layout_data:
if 'bbox' in item and 'category' in item:
bbox = item['bbox']
category = item['category']
color = colors.get(category, '#000000')
# Draw rectangle
draw.rectangle(bbox, outline=color, width=2)
# Draw label
label = category
label_bbox = draw.textbbox((0, 0), label, font=font)
label_width = label_bbox[2] - label_bbox[0]
label_height = label_bbox[3] - label_bbox[1]
# Position label above the box
label_x = bbox[0]
label_y = max(0, bbox[1] - label_height - 2)
# Draw background for label
draw.rectangle(
[label_x, label_y, label_x + label_width + 4, label_y + label_height + 2],
fill=color
)
# Draw text
draw.text((label_x + 2, label_y + 1), label, fill='white', font=font)
except Exception as e:
print(f"Error drawing layout: {e}")
return img_copy
def is_arabic_text(text: str) -> bool:
"""Check if text in headers and paragraphs contains mostly Arabic characters"""
if not text:
return False
# Extract text from headers and paragraphs only
# Match markdown headers (# ## ###) and regular paragraph text
header_pattern = r'^#{1,6}\s+(.+)$'
paragraph_pattern = r'^(?!#{1,6}\s|!\[|```|\||\s*[-*+]\s|\s*\d+\.\s)(.+)$'
content_text = []
for line in text.split('\n'):
line = line.strip()
if not line:
continue
# Check for headers
header_match = re.match(header_pattern, line, re.MULTILINE)
if header_match:
content_text.append(header_match.group(1))
continue
# Check for paragraph text (exclude lists, tables, code blocks, images)
if re.match(paragraph_pattern, line, re.MULTILINE):
content_text.append(line)
if not content_text:
return False
# Join all content text and check for Arabic characters
combined_text = ' '.join(content_text)
# Arabic Unicode ranges
arabic_chars = 0
total_chars = 0
for char in combined_text:
if char.isalpha():
total_chars += 1
# Arabic script ranges
if ('\u0600' <= char <= '\u06FF') or ('\u0750' <= char <= '\u077F') or ('\u08A0' <= char <= '\u08FF'):
arabic_chars += 1
if total_chars == 0:
return False
# Consider text as Arabic if more than 50% of alphabetic characters are Arabic
return (arabic_chars / total_chars) > 0.5
def layoutjson2md(image: Image.Image, layout_data: List[Dict], text_key: str = 'text') -> str:
"""Convert layout JSON to markdown format"""
import base64
from io import BytesIO
markdown_lines = []
try:
# Sort items by reading order (top to bottom, left to right)
sorted_items = sorted(layout_data, key=lambda x: (x.get('bbox', [0, 0, 0, 0])[1], x.get('bbox', [0, 0, 0, 0])[0]))
for item in sorted_items:
category = item.get('category', '')
text = item.get(text_key, '')
bbox = item.get('bbox', [])
if category == 'Picture':
# Extract image region and embed it
if bbox and len(bbox) == 4:
try:
# Extract the image region
x1, y1, x2, y2 = bbox
# Ensure coordinates are within image bounds
x1, y1 = max(0, int(x1)), max(0, int(y1))
x2, y2 = min(image.width, int(x2)), min(image.height, int(y2))
if x2 > x1 and y2 > y1:
cropped_img = image.crop((x1, y1, x2, y2))
# Convert to base64 for embedding
buffer = BytesIO()
cropped_img.save(buffer, format='PNG')
img_data = base64.b64encode(buffer.getvalue()).decode()
# Add as markdown image
markdown_lines.append(f"\n")
else:
markdown_lines.append("\n")
except Exception as e:
print(f"Error processing image region: {e}")
markdown_lines.append("\n")
else:
markdown_lines.append("\n")
elif not text:
continue
elif category == 'Title':
markdown_lines.append(f"# {text}\n")
elif category == 'Section-header':
markdown_lines.append(f"## {text}\n")
elif category == 'Text':
markdown_lines.append(f"{text}\n")
elif category == 'List-item':
markdown_lines.append(f"- {text}\n")
elif category == 'Table':
# If text is already HTML, keep it as is
if text.strip().startswith('<'):
markdown_lines.append(f"{text}\n")
else:
markdown_lines.append(f"**Table:** {text}\n")
elif category == 'Formula':
# If text is LaTeX, format it properly
if text.strip().startswith('$') or '\\' in text:
markdown_lines.append(f"$$\n{text}\n$$\n")
else:
markdown_lines.append(f"**Formula:** {text}\n")
elif category == 'Caption':
markdown_lines.append(f"*{text}*\n")
elif category == 'Footnote':
markdown_lines.append(f"^{text}^\n")
elif category in ['Page-header', 'Page-footer']:
# Skip headers and footers in main content
continue
else:
markdown_lines.append(f"{text}\n")
markdown_lines.append("") # Add spacing
except Exception as e:
print(f"Error converting to markdown: {e}")
return str(layout_data)
return "\n".join(markdown_lines)
# Initialize model and processor at script level
# model_id = "rednote-hilab/dots.ocr"
model_id = "helizac/dots.ocr-4bit"
model_path = "./models/dots-ocr-local"
model_path = snapshot_download(
repo_id=model_id,
local_dir=model_path,
local_dir_use_symlinks=False, # Recommended to set to False to avoid symlink issues
)
model = AutoModelForCausalLM.from_pretrained(
model_path,
attn_implementation="flash_attention_2",
torch_dtype=torch.bfloat16,
device_map="auto",
trust_remote_code=True
)
processor = AutoProcessor.from_pretrained(
model_path,
trust_remote_code=True
)
# Global state variables
device = "cuda" if torch.cuda.is_available() else "cpu"
# PDF handling state
pdf_cache = {
"images": [],
"current_page": 0,
"total_pages": 0,
"file_type": None,
"is_parsed": False,
"results": []
}
@spaces.GPU()
def inference(image: Image.Image, prompt: str, max_new_tokens: int = 24000) -> str:
"""Run inference on an image with the given prompt"""
try:
if model is None or processor is None:
raise RuntimeError("Model not loaded. Please check model initialization.")
# Prepare messages in the expected format
messages = [
{
"role": "user",
"content": [
{
"type": "image",
"image": image
},
{"type": "text", "text": prompt}
]
}
]
# Apply chat template
text = processor.apply_chat_template(
messages,
tokenize=False,
add_generation_prompt=True
)
# Process vision information
image_inputs, video_inputs = process_vision_info(messages)
# Prepare inputs
inputs = processor(
text=[text],
images=image_inputs,
videos=video_inputs,
padding=True,
return_tensors="pt",
)
# Move to device
inputs = inputs.to(device)
# Generate output
with torch.no_grad():
generated_ids = model.generate(
**inputs,
max_new_tokens=max_new_tokens,
do_sample=False,
# temperature=0.1
temperature=0.6, top_p=0.9, repetition_penalty=1.15
)
# Decode output
generated_ids_trimmed = [
out_ids[len(in_ids):] for in_ids, out_ids in zip(inputs.input_ids, generated_ids)
]
output_text = processor.batch_decode(
generated_ids_trimmed,
skip_special_tokens=True,
clean_up_tokenization_spaces=False
)
return output_text[0] if output_text else ""
except Exception as e:
print(f"Error during inference: {e}")
traceback.print_exc()
return f"Error during inference: {str(e)}"
def process_image(
image: Image.Image,
min_pixels: Optional[int] = None,
max_pixels: Optional[int] = None
) -> Dict[str, Any]:
"""Process a single image with the specified prompt mode"""
try:
# Resize image if needed
if min_pixels is not None or max_pixels is not None:
image = fetch_image(image, min_pixels=min_pixels, max_pixels=max_pixels)
# Run inference with the default prompt
raw_output = inference(image, prompt)
# Process results based on prompt mode
result = {
'original_image': image,
'raw_output': raw_output,
'processed_image': image,
'layout_result': None,
'markdown_content': None
}
# Try to parse JSON and create visualizations (since we're doing layout analysis)
try:
# Try to parse JSON output
layout_data = json.loads(raw_output)
result['layout_result'] = layout_data
# Create visualization with bounding boxes
try:
processed_image = draw_layout_on_image(image, layout_data)
result['processed_image'] = processed_image
except Exception as e:
print(f"Error drawing layout: {e}")
result['processed_image'] = image
# Generate markdown from layout data
try:
markdown_content = layoutjson2md(image, layout_data, text_key='text')
result['markdown_content'] = markdown_content
except Exception as e:
print(f"Error generating markdown: {e}")
result['markdown_content'] = raw_output
except json.JSONDecodeError:
print("Failed to parse JSON output, using raw output")
result['markdown_content'] = raw_output
return result
except Exception as e:
print(f"Error processing image: {e}")
traceback.print_exc()
return {
'original_image': image,
'raw_output': f"Error processing image: {str(e)}",
'processed_image': image,
'layout_result': None,
'markdown_content': f"Error processing image: {str(e)}"
}
def load_file_for_preview(file_path: str) -> Tuple[Optional[Image.Image], str]:
"""Load file for preview (supports PDF and images)"""
global pdf_cache
if not file_path or not os.path.exists(file_path):
return None, "No file selected"
file_ext = os.path.splitext(file_path)[1].lower()
try:
if file_ext == '.pdf':
# Load PDF pages
images = load_images_from_pdf(file_path)
if not images:
return None, "Failed to load PDF"
pdf_cache.update({
"images": images,
"current_page": 0,
"total_pages": len(images),
"file_type": "pdf",
"is_parsed": False,
"results": []
})
return images[0], f"Page 1 / {len(images)}"
elif file_ext in ['.jpg', '.jpeg', '.png', '.bmp', '.tiff']:
# Load single image
image = Image.open(file_path).convert('RGB')
pdf_cache.update({
"images": [image],
"current_page": 0,
"total_pages": 1,
"file_type": "image",
"is_parsed": False,
"results": []
})
return image, "Page 1 / 1"
else:
return None, f"Unsupported file format: {file_ext}"
except Exception as e:
print(f"Error loading file: {e}")
return None, f"Error loading file: {str(e)}"
def turn_page(direction: str) -> Tuple[Optional[Image.Image], str, Any, Optional[Image.Image], Optional[Dict]]:
"""Navigate through PDF pages and update all relevant outputs."""
global pdf_cache
if not pdf_cache["images"]:
return None, '<div class="page-info">No file loaded</div>', "No results yet", None, None
if direction == "prev":
pdf_cache["current_page"] = max(0, pdf_cache["current_page"] - 1)
elif direction == "next":
pdf_cache["current_page"] = min(
pdf_cache["total_pages"] - 1,
pdf_cache["current_page"] + 1
)
index = pdf_cache["current_page"]
current_image_preview = pdf_cache["images"][index]
page_info_html = f'<div class="page-info">Page {index + 1} / {pdf_cache["total_pages"]}</div>'
# Initialize default result values
markdown_content = "Page not processed yet"
processed_img = None
layout_json = None
# Get results for current page if available
if (pdf_cache["is_parsed"] and
index < len(pdf_cache["results"]) and
pdf_cache["results"][index]):
result = pdf_cache["results"][index]
markdown_content = result.get('markdown_content') or result.get('raw_output', 'No content available')
processed_img = result.get('processed_image', None) # Get the processed image
layout_json = result.get('layout_result', None) # Get the layout JSON
# Check for Arabic text to set RTL property
if is_arabic_text(markdown_content):
markdown_update = gr.update(value=markdown_content, rtl=True)
else:
markdown_update = markdown_content
return current_image_preview, page_info_html, markdown_update, processed_img, layout_json
def create_gradio_interface():
"""Create the Gradio interface"""
# Custom CSS
css = """
.main-container {
max-width: 1400px;
margin: 0 auto;
}
.header-text {
text-align: center;
color: #2c3e50;
margin-bottom: 20px;
}
.process-button {
border: none !important;
color: white !important;
font-weight: bold !important;
}
.process-button:hover {
transform: translateY(-2px) !important;
box-shadow: 0 4px 8px rgba(0,0,0,0.2) !important;
}
.info-box {
border: 1px solid #dee2e6;
border-radius: 8px;
padding: 15px;
margin: 10px 0;
}
.page-info {
text-align: center;
padding: 8px 16px;
border-radius: 20px;
font-weight: bold;
margin: 10px 0;
}
.model-status {
padding: 10px;
border-radius: 8px;
margin: 10px 0;
text-align: center;
font-weight: bold;
}
.status-ready {
background: #d1edff;
color: #0c5460;
border: 1px solid #b8daff;
}
"""
with gr.Blocks(theme=gr.themes.Soft(), css=css, title="Dots.OCR Demo") as demo:
# Header
gr.HTML("""
<div class="title" style="text-align: center">
<h1>π Dot-OCR - Multilingual Document Text Extraction</h1>
<p style="font-size: 1.1em; color: #6b7280; margin-bottom: 0.6em;">
A state-of-the-art image/pdf-to-markdown vision language model for intelligent document processing
</p>
<div style="display: flex; justify-content: center; gap: 20px; margin: 15px 0;">
<a href="https://huggingface.co/helizac/dots.ocr-4bit" target="_blank" style="text-decoration: none; color: #2563eb; font-weight: 500;">
π Hugging Face Model
</a>
<a href="https://github.com/rednote-hilab/dots.ocr/blob/master/assets/blog.md" target="_blank" style="text-decoration: none; color: #2563eb; font-weight: 500;">
π Release Blog
</a>
<a href="https://github.com/rednote-hilab/dots.ocr" target="_blank" style="text-decoration: none; color: #2563eb; font-weight: 500;">
π» GitHub Repository
</a>
</div>
</div>
""")
# Main interface
with gr.Row():
# Left column - Input and controls
with gr.Column(scale=1):
# File input
file_input = gr.File(
label="Upload Image or PDF",
file_types=[".jpg", ".jpeg", ".png", ".bmp", ".tiff", ".pdf"],
type="filepath"
)
# Image preview
image_preview = gr.Image(
label="Preview",
type="pil",
interactive=False,
height=300
)
# Page navigation for PDFs
with gr.Row():
prev_page_btn = gr.Button("β Previous", size="md")
page_info = gr.HTML('<div class="page-info">No file loaded</div>')
next_page_btn = gr.Button("Next βΆ", size="md")
# Advanced settings
with gr.Accordion("Advanced Settings", open=False):
max_new_tokens = gr.Slider(
minimum=1000,
maximum=32000,
value=24000,
step=1000,
label="Max New Tokens",
info="Maximum number of tokens to generate"
)
min_pixels = gr.Number(
value=MIN_PIXELS,
label="Min Pixels",
info="Minimum image resolution"
)
max_pixels = gr.Number(
value=MAX_PIXELS,
label="Max Pixels",
info="Maximum image resolution"
)
# Process button
process_btn = gr.Button(
"π Process Document",
variant="primary",
elem_classes=["process-button"],
size="lg"
)
# Clear button
clear_btn = gr.Button("ποΈ Clear All", variant="secondary")
# Right column - Results
with gr.Column(scale=2):
# Results tabs
with gr.Tabs():
# Processed image tab
with gr.Tab("πΌοΈ Processed Image"):
processed_image = gr.Image(
label="Image with Layout Detection",
type="pil",
interactive=False,
height=500
)
# Markdown output tab
with gr.Tab("π Extracted Content"):
markdown_output = gr.Markdown(
value="Click 'Process Document' to see extracted content...",
height=500
)
# JSON layout tab
with gr.Tab("π Layout JSON"):
json_output = gr.JSON(
label="Layout Analysis Results",
value=None
)
# Event handlers
def process_document(file_path, max_tokens, min_pix, max_pix):
"""Process the uploaded document"""
global pdf_cache
try:
if not file_path:
return None, "Please upload a file first.", None
if model is None:
return None, "Model not loaded. Please refresh the page and try again.", None
# Load and preview file
image, page_info = load_file_for_preview(file_path)
if image is None:
return None, page_info, None
# Process the image(s)
if pdf_cache["file_type"] == "pdf":
# Process all pages for PDF
all_results = []
all_markdown = []
for i, img in enumerate(pdf_cache["images"]):
result = process_image(
img,
min_pixels=int(min_pix) if min_pix else None,
max_pixels=int(max_pix) if max_pix else None
)
all_results.append(result)
if result.get('markdown_content'):
all_markdown.append(f"## Page {i+1}\n\n{result['markdown_content']}")
pdf_cache["results"] = all_results
pdf_cache["is_parsed"] = True
# Show results for first page
first_result = all_results[0]
combined_markdown = "\n\n---\n\n".join(all_markdown)
# Check if the combined markdown contains mostly Arabic text
if is_arabic_text(combined_markdown):
markdown_update = gr.update(value=combined_markdown, rtl=True)
else:
markdown_update = combined_markdown
return (
first_result['processed_image'],
markdown_update,
first_result['layout_result']
)
else:
# Process single image
result = process_image(
image,
min_pixels=int(min_pix) if min_pix else None,
max_pixels=int(max_pix) if max_pix else None
)
pdf_cache["results"] = [result]
pdf_cache["is_parsed"] = True
# Check if the content contains mostly Arabic text
content = result['markdown_content'] or "No content extracted"
if is_arabic_text(content):
markdown_update = gr.update(value=content, rtl=True)
else:
markdown_update = content
return (
result['processed_image'],
markdown_update,
result['layout_result']
)
except Exception as e:
error_msg = f"Error processing document: {str(e)}"
print(error_msg)
traceback.print_exc()
return None, error_msg, None
def handle_file_upload(file_path):
"""Handle file upload and show preview"""
if not file_path:
return None, "No file loaded"
image, page_info = load_file_for_preview(file_path)
return image, page_info
def handle_page_turn(direction):
"""Handle page navigation"""
image, page_info, result = turn_page(direction)
return image, page_info, result
def clear_all():
"""Clear all data and reset interface"""
global pdf_cache
pdf_cache = {
"images": [], "current_page": 0, "total_pages": 0,
"file_type": None, "is_parsed": False, "results": []
}
return (
None, # file_input
None, # image_preview
'<div class="page-info">No file loaded</div>', # page_info
None, # processed_image
"Click 'Process Document' to see extracted content...", # markdown_output
None, # json_output
)
# Wire up event handlers
file_input.change(
handle_file_upload,
inputs=[file_input],
outputs=[image_preview, page_info]
)
# The outputs list is now updated to include all components that need to change
prev_page_btn.click(
lambda: turn_page("prev"),
outputs=[image_preview, page_info, markdown_output, processed_image, json_output]
)
next_page_btn.click(
lambda: turn_page("next"),
outputs=[image_preview, page_info, markdown_output, processed_image, json_output]
)
process_btn.click(
process_document,
inputs=[file_input, max_new_tokens, min_pixels, max_pixels],
outputs=[processed_image, markdown_output, json_output]
)
# The outputs list for the clear button is now correct
clear_btn.click(
clear_all,
outputs=[
file_input, image_preview, page_info, processed_image,
markdown_output, json_output
]
)
return demo
if __name__ == "__main__":
# Create and launch the interface
demo = create_gradio_interface()
demo.queue(max_size=10).launch(
server_name="0.0.0.0",
server_port=7860,
share=False,
debug=True,
show_error=True
)
|