Spaces:
Runtime error
Runtime error
File size: 5,582 Bytes
713ec7d 3fad0f4 713ec7d c331654 55853c4 c331654 01e731e c331654 39a46ec c331654 a9684d6 fac7910 01e731e 39a46ec 01e731e 27a0683 713ec7d b107b62 713ec7d c331654 713ec7d a9684d6 713ec7d 8506797 713ec7d a9684d6 713ec7d b8b3bb8 afd35b0 f627105 b107b62 60ed05b 8870daa 67635cd fac7910 a12399b 9525232 b107b62 9525232 01e731e be102ba 9525232 01e731e be102ba 9525232 be102ba 9525232 be102ba b8b3bb8 fac7910 7389249 7d24c56 f933a72 0e95c6d f933a72 fac7910 f933a72 7d24c56 f933a72 7389249 1e8d7dc 713ec7d 1e8d7dc 713ec7d 3e7f1a1 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 |
import gradio as gr
from PIL import Image
import torch
from diffusers import StableDiffusionPipeline
from free_lunch_utils import register_free_upblock2d, register_free_crossattn_upblock2d
model_id = "stabilityai/stable-diffusion-2-1"
# model_id = "./stable-diffusion-2-1"
pip_2_1 = StableDiffusionPipeline.from_pretrained(model_id, torch_dtype=torch.float16)
pip_2_1 = pip_2_1.to("cuda")
prompt_prev = None
sd_options_prev = None
seed_prev = None
sd_image_prev = None
def infer(prompt, sd_options, seed, b1, b2, s1, s2):
global prompt_prev
global sd_options_prev
global seed_prev
global sd_image_prev
# if sd_options == 'SD1.5':
# pip = pip_1_5
# elif sd_options == 'SD2.1':
# pip = pip_2_1
# else:
# pip = pip_1_4
pip = pip_2_1
run_baseline = False
if prompt != prompt_prev or sd_options != sd_options_prev or seed != seed_prev:
run_baseline = True
prompt_prev = prompt
sd_options_prev = sd_options
seed_prev = seed
if run_baseline:
register_free_upblock2d(pip, b1=1.0, b2=1.0, s1=1.0, s2=1.0)
register_free_crossattn_upblock2d(pip, b1=1.0, b2=1.0, s1=1.0, s2=1.0)
torch.manual_seed(seed)
print("Generating SD:")
sd_image = pip(prompt, num_inference_steps=25).images[0]
sd_image_prev = sd_image
else:
sd_image = sd_image_prev
register_free_upblock2d(pip, b1=b1, b2=b2, s1=s1, s2=s1)
register_free_crossattn_upblock2d(pip, b1=b1, b2=b2, s1=s1, s2=s1)
torch.manual_seed(seed)
print("Generating FreeU:")
freeu_image = pip(prompt, num_inference_steps=25).images[0]
# First SD, then freeu
images = [sd_image, freeu_image]
return images
examples = [
[
"A small cabin on top of a snowy mountain in the style of Disney, artstation",
],
[
"half human half cat, a human cat hybrid",
],
[
"a drone flying over a snowy forest."
],
]
css = """
h1 {
text-align: center;
}
#component-0 {
max-width: 730px;
margin: auto;
}
"""
block = gr.Blocks(css='style.css')
options = ['SD2.1']
with block:
gr.Markdown("SD vs. FreeU.")
with gr.Group():
with gr.Row():
sd_options = gr.Dropdown(["SD2.1"], label="SD options")
with gr.Column():
with gr.Row(elem_id="prompt-container").style(mobile_collapse=False, equal_height=True):
with gr.Column():
text = gr.Textbox(
label="Enter your prompt",
show_label=False,
max_lines=1,
placeholder="Enter your prompt",
container=False,
)
btn = gr.Button("Generate image", scale=0)
seed = gr.Slider(label='seed',
minimum=0,
maximum=1000,
step=1,
value=42)
with gr.Group():
with gr.Row():
with gr.Accordion('FreeU Parameters: b', open=True):
b1 = gr.Slider(label='b1: backbone factor of the first stage block of decoder',
minimum=1,
maximum=1.6,
step=0.01,
value=1.1)
b2 = gr.Slider(label='b2: backbone factor of the second stage block of decoder',
minimum=1,
maximum=1.6,
step=0.01,
value=1.2)
with gr.Accordion('FreeU Parameters: s', open=True):
s1 = gr.Slider(label='s1: skip factor of the first stage block of decoder',
minimum=0,
maximum=1,
step=0.1,
value=0.9)
s2 = gr.Slider(label='s2: skip factor of the second stage block of decoder',
minimum=0,
maximum=1,
step=0.1,
value=0.2)
with gr.Row():
with gr.Group():
# btn = gr.Button("Generate image", scale=0)
with gr.Row():
with gr.Column() as c1:
image_1 = gr.Image(interactive=False)
image_1_label = gr.Markdown("SD")
with gr.Group():
# btn = gr.Button("Generate image", scale=0)
with gr.Row():
with gr.Column() as c2:
image_2 = gr.Image(interactive=False)
image_2_label = gr.Markdown("FreeU")
ex = gr.Examples(examples=examples, fn=infer, inputs=[text, sd_options, seed, b1, b2, s1, s2], outputs=[image_1, image_2], cache_examples=False)
ex.dataset.headers = [""]
text.submit(infer, inputs=[text, sd_options, seed, b1, b2, s1, s2], outputs=[image_1, image_2])
btn.click(infer, inputs=[text, sd_options, seed, b1, b2, s1, s2], outputs=[image_1, image_2])
block.launch()
# block.queue(default_enabled=False).launch(share=False)
|