test / app.py
Chengxb888's picture
Update app.py
47c0611 verified
raw
history blame
1.62 kB
from fastapi import FastAPI
import torch
from transformers import AutoModelForCausalLM, AutoTokenizer, pipeline
app = FastAPI()
@app.get("/")
def greet_json():
return {"Hello": "World!"}
@app.get("/hello/{msg}")
def say_hello(msg: str):
print("model")
torch.random.manual_seed(0)
model = AutoModelForCausalLM.from_pretrained(
"microsoft/Phi-3-mini-4k-instruct",
device_map="auto",
torch_dtype="auto",
trust_remote_code=True,
)
print("token & msg")
tokenizer = AutoTokenizer.from_pretrained("microsoft/Phi-3-mini-128k-instruct")
messages = [
{"role": "system", "content": "You are a helpful AI assistant."},
{"role": "user", "content": "Can you provide ways to eat combinations of bananas and dragonfruits?"},
{"role": "assistant", "content": "Sure! Here are some ways to eat bananas and dragonfruits together: 1. Banana and dragonfruit smoothie: Blend bananas and dragonfruits together with some milk and honey. 2. Banana and dragonfruit salad: Mix sliced bananas and dragonfruits together with some lemon juice and honey."},
{"role": "user", "content": msg},
]
print("pipe")
pipe = pipeline(
"text-generation",
model=model,
tokenizer=tokenizer,
)
print("output")
# generation_args = {
# "max_new_tokens": 500,
# "return_full_text": False,
# "temperature": 0.0,
# "do_sample": False,
# }
output = pipe(messages) #, **generation_args)
print("complete")
return {"message": output[0]['generated_text']}