Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,46 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import json
|
2 |
+
import streamlit as st
|
3 |
+
from PyPDF2 import PdfReader
|
4 |
+
from transformers import pipeline
|
5 |
+
|
6 |
+
# Initialize the Hugging Face model pipeline
|
7 |
+
model_name = "your-huggingface-model-name" # Replace with your model's name
|
8 |
+
nlp_pipeline = pipeline("text2text-generation", model=model_name)
|
9 |
+
|
10 |
+
def process_pdf(file):
|
11 |
+
reader = PdfReader(file)
|
12 |
+
text = ""
|
13 |
+
for page in reader.pages:
|
14 |
+
text += page.extract_text()
|
15 |
+
return text
|
16 |
+
|
17 |
+
def convert_to_json(text):
|
18 |
+
# Use the Hugging Face model to process the text
|
19 |
+
result = nlp_pipeline(text)
|
20 |
+
return result[0]['generated_text']
|
21 |
+
|
22 |
+
st.title("PDF to JSON Converter")
|
23 |
+
|
24 |
+
uploaded_file = st.file_uploader("Upload a PDF file", type=["pdf"])
|
25 |
+
|
26 |
+
if uploaded_file is not None:
|
27 |
+
st.write("Processing your file...")
|
28 |
+
|
29 |
+
# Extract text from the PDF
|
30 |
+
pdf_text = process_pdf(uploaded_file)
|
31 |
+
|
32 |
+
# Convert the extracted text to JSON using the Hugging Face model
|
33 |
+
json_output = convert_to_json(pdf_text)
|
34 |
+
|
35 |
+
# Display the JSON output
|
36 |
+
st.write("Converted JSON:")
|
37 |
+
st.json(json.loads(json_output))
|
38 |
+
|
39 |
+
# Provide a download link for the JSON file
|
40 |
+
json_filename = uploaded_file.name.replace(".pdf", ".json")
|
41 |
+
st.download_button(
|
42 |
+
label="Download JSON",
|
43 |
+
data=json_output,
|
44 |
+
file_name=json_filename,
|
45 |
+
mime="application/json"
|
46 |
+
)
|