import streamlit as st from transformers import pipeline, AutoModelForCausalLM, AutoTokenizer from typing import List, Dict import os # Initialize the Hugging Face pipeline (ensure to use a valid model) model_name = "your_huggingface_model_name" # Ensure to use a valid model tokenizer = AutoTokenizer.from_pretrained(model_name) try: model = AutoModelForCausalLM.from_pretrained(model_name) generator = pipeline("text-generation", model=model, tokenizer=tokenizer) except Exception as e: st.error(f"Error initializing the model '{model_name}': {e}") # Function to generate OSINT results def generate_osint_results(prompt: str, history: List[Dict[str, str]]) -> List[str]: """ Simulates generating OSINT-based results from the user's input. Args: prompt (str): The user's input to the simulator. history (List[Dict]): The user's message history with timestamps. Returns: List[str]: A list of OSINT responses from the AI. """ # Validate inputs if not prompt.strip(): return ["Error: Prompt cannot be empty."] if not isinstance(history, list) or not all(isinstance(h, dict) for h in history): return ["Error: History must be a list of dictionaries."] # Prepare messages for the AI messages = [{"role": "system", "content": f"Responding to OSINT prompt: {prompt}"}] for val in history: if "user" in val: messages.append({"role": "user", "content": val["user"]}) if "assistant" in val: messages.append({"role": "assistant", "content": val["assistant"]}) # Append the current user prompt messages.append({"role": "user", "content": prompt}) # Generate a response using the Hugging Face model try: response = generator(messages[-1]["content"], max_length=100, num_return_sequences=1) return [response[0]["generated_text"]] except Exception as e: return [f"Error generating response: {e}"] # Function for fine-tuning the model with the uploaded dataset def fine_tune_model(dataset: str) -> str: """ Fine-tunes the model using the uploaded dataset. Args: dataset (str): The path to the dataset for fine-tuning. Returns: str: A message indicating whether fine-tuning was successful or failed. """ try: # Process the dataset (dummy processing for illustration) with open(dataset, "r") as file: data = file.readlines() # Simulate fine-tuning with the provided dataset # Here, you would use the data to fine-tune the model # For this example, we're not actually fine-tuning the model. model.save_pretrained("./fine_tuned_model") return "Model fine-tuned successfully!" except Exception as e: return f"Error fine-tuning the model: {e}" # Streamlit app interface st.title("OSINT Tool") st.write("This tool generates OSINT-based results and allows you to fine-tune the model with custom datasets.") # User input for prompt and message history prompt = st.text_area("Enter your OSINT prompt here...", placeholder="Type your prompt here...") history = [] # Display message history if "history" not in st.session_state: st.session_state.history = [] # Display past conversation st.write("### Message History:") for msg in st.session_state.history: st.write(f"**User**: {msg['user']}") st.write(f"**Assistant**: {msg['assistant']}") # Fine-tuning functionality dataset_file = st.file_uploader("Upload a dataset for fine-tuning", type=["txt"]) if dataset_file is not None: # Save the uploaded file dataset_path = os.path.join("uploads", dataset_file.name) with open(dataset_path, "wb") as f: f.write(dataset_file.read()) # Fine-tune the model fine_tuning_status = fine_tune_model(dataset_path) st.success(fine_tuning_status) # Generate OSINT response when prompt is entered if st.button("Generate OSINT Results"): if prompt: response = generate_osint_results(prompt, st.session_state.history) st.session_state.history.append({"user": prompt, "assistant": response[0]}) st.write("### Generated OSINT Result:") st.write(response[0]) else: st.error("Please enter a prompt.") # Optionally save fine-tuned model if os.path.exists("./fine_tuned_model"): st.write("The model has been fine-tuned and saved as `fine_tuned_model`.")