Spaces:
Running
Running
Update app.py
Browse files
app.py
CHANGED
@@ -1,118 +1,25 @@
|
|
1 |
-
import
|
2 |
-
from transformers import pipeline, AutoModelForCausalLM, AutoTokenizer
|
3 |
-
from typing import List, Dict
|
4 |
import os
|
5 |
|
6 |
-
#
|
7 |
-
model_name = "
|
8 |
-
|
|
|
9 |
try:
|
10 |
-
|
11 |
-
|
|
|
12 |
except Exception as e:
|
13 |
-
|
14 |
-
|
15 |
-
|
16 |
-
|
17 |
-
|
18 |
-
|
19 |
-
|
20 |
-
|
21 |
-
|
22 |
-
|
23 |
-
|
24 |
-
|
25 |
-
|
26 |
-
# Validate inputs
|
27 |
-
if not prompt.strip():
|
28 |
-
return ["Error: Prompt cannot be empty."]
|
29 |
-
if not isinstance(history, list) or not all(isinstance(h, dict) for h in history):
|
30 |
-
return ["Error: History must be a list of dictionaries."]
|
31 |
-
|
32 |
-
# Prepare messages for the AI
|
33 |
-
messages = [{"role": "system", "content": f"Responding to OSINT prompt: {prompt}"}]
|
34 |
-
for val in history:
|
35 |
-
if "user" in val:
|
36 |
-
messages.append({"role": "user", "content": val["user"]})
|
37 |
-
if "assistant" in val:
|
38 |
-
messages.append({"role": "assistant", "content": val["assistant"]})
|
39 |
-
|
40 |
-
# Append the current user prompt
|
41 |
-
messages.append({"role": "user", "content": prompt})
|
42 |
-
|
43 |
-
# Generate a response using the Hugging Face model
|
44 |
-
if generator:
|
45 |
-
try:
|
46 |
-
response = generator(messages[-1]["content"], max_length=100, num_return_sequences=1)
|
47 |
-
return [response[0]["generated_text"]]
|
48 |
-
except Exception as e:
|
49 |
-
return [f"Error generating response: {e}"]
|
50 |
-
else:
|
51 |
-
return ["Error: Model initialization failed."]
|
52 |
-
|
53 |
-
# Function for fine-tuning the model with the uploaded dataset
|
54 |
-
def fine_tune_model(dataset: str) -> str:
|
55 |
-
"""
|
56 |
-
Fine-tunes the model using the uploaded dataset.
|
57 |
-
Args:
|
58 |
-
dataset (str): The path to the dataset for fine-tuning.
|
59 |
-
Returns:
|
60 |
-
str: A message indicating whether fine-tuning was successful or failed.
|
61 |
-
"""
|
62 |
-
try:
|
63 |
-
# Process the dataset (dummy processing for illustration)
|
64 |
-
with open(dataset, "r") as file:
|
65 |
-
data = file.readlines()
|
66 |
-
|
67 |
-
# Simulate fine-tuning with the provided dataset
|
68 |
-
# Here, you would use the data to fine-tune the model
|
69 |
-
# For this example, we're not actually fine-tuning the model.
|
70 |
-
model.save_pretrained("./fine_tuned_model")
|
71 |
-
return "Model fine-tuned successfully!"
|
72 |
-
except Exception as e:
|
73 |
-
return f"Error fine-tuning the model: {e}"
|
74 |
-
|
75 |
-
# Streamlit app interface
|
76 |
-
st.title("OSINT Tool")
|
77 |
-
st.write("This tool generates OSINT-based results and allows you to fine-tune the model with custom datasets.")
|
78 |
-
|
79 |
-
# User input for prompt and message history
|
80 |
-
prompt = st.text_area("Enter your OSINT prompt here...", placeholder="Type your prompt here...")
|
81 |
-
|
82 |
-
# Initialize session state for message history
|
83 |
-
if "history" not in st.session_state:
|
84 |
-
st.session_state.history = []
|
85 |
-
|
86 |
-
# Display past conversation
|
87 |
-
st.write("### Message History:")
|
88 |
-
for msg in st.session_state.history:
|
89 |
-
st.write(f"**User**: {msg['user']}")
|
90 |
-
st.write(f"**Assistant**: {msg['assistant']}")
|
91 |
-
|
92 |
-
# Fine-tuning functionality
|
93 |
-
dataset_file = st.file_uploader("Upload a dataset for fine-tuning", type=["txt"])
|
94 |
-
|
95 |
-
if dataset_file is not None:
|
96 |
-
# Save the uploaded file
|
97 |
-
dataset_path = os.path.join("uploads", dataset_file.name)
|
98 |
-
os.makedirs("uploads", exist_ok=True)
|
99 |
-
with open(dataset_path, "wb") as f:
|
100 |
-
f.write(dataset_file.read())
|
101 |
-
|
102 |
-
# Fine-tune the model
|
103 |
-
fine_tuning_status = fine_tune_model(dataset_path)
|
104 |
-
st.success(fine_tuning_status)
|
105 |
-
|
106 |
-
# Generate OSINT response when prompt is entered
|
107 |
-
if st.button("Generate OSINT Results"):
|
108 |
-
if prompt:
|
109 |
-
response = generate_osint_results(prompt, st.session_state.history)
|
110 |
-
st.session_state.history.append({"user": prompt, "assistant": response[0]})
|
111 |
-
st.write("### Generated OSINT Result:")
|
112 |
-
st.write(response[0])
|
113 |
-
else:
|
114 |
-
st.error("Please enter a prompt.")
|
115 |
-
|
116 |
-
# Optionally save fine-tuned model
|
117 |
-
if os.path.exists("./fine_tuned_model"):
|
118 |
-
st.write("The model has been fine-tuned and saved as `fine_tuned_model`.")
|
|
|
1 |
+
from transformers import AutoTokenizer, AutoModelForSequenceClassification
|
|
|
|
|
2 |
import os
|
3 |
|
4 |
+
# Define the model name (replace with your actual model name)
|
5 |
+
model_name = "huggingface/transformers" # Example model name
|
6 |
+
|
7 |
+
# Load the tokenizer and model
|
8 |
try:
|
9 |
+
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
10 |
+
model = AutoModelForSequenceClassification.from_pretrained(model_name)
|
11 |
+
print("Model and tokenizer loaded successfully!")
|
12 |
except Exception as e:
|
13 |
+
print(f"Error loading model: {e}")
|
14 |
+
|
15 |
+
# Add your app logic here (e.g., for inference, etc.)
|
16 |
+
def predict(text):
|
17 |
+
inputs = tokenizer(text, return_tensors="pt")
|
18 |
+
outputs = model(**inputs)
|
19 |
+
return outputs
|
20 |
+
|
21 |
+
# Example usage
|
22 |
+
if __name__ == "__main__":
|
23 |
+
test_text = "Hello, world!"
|
24 |
+
result = predict(test_text)
|
25 |
+
print(result)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|