Spaces:
Running
Running
| import streamlit as st | |
| from transformers import AutoTokenizer, AutoModelForSequenceClassification, AutoModelForSeq2SeqLM | |
| import torch | |
| # Sidebar for user input | |
| st.sidebar.header("Model Configuration") | |
| model_choice = st.sidebar.selectbox("Select a model", [ | |
| "CyberAttackDetection", | |
| "text2shellcommands", | |
| "pentest_ai" | |
| ]) | |
| # Define the model names | |
| model_mapping = { | |
| "CyberAttackDetection": "Canstralian/CyberAttackDetection", | |
| "text2shellcommands": "Canstralian/text2shellcommands", | |
| "pentest_ai": "Canstralian/pentest_ai" | |
| } | |
| model_name = model_mapping.get(model_choice, "Canstralian/CyberAttackDetection") | |
| # Load model and tokenizer on demand | |
| def load_model(model_name): | |
| try: | |
| # Fallback to a known model for debugging | |
| if model_name == "Canstralian/text2shellcommands": | |
| model_name = "t5-small" # Use a known model like T5 for testing | |
| # Load the model and tokenizer | |
| tokenizer = AutoTokenizer.from_pretrained(model_name) | |
| if "seq2seq" in model_name.lower(): | |
| model = AutoModelForSeq2SeqLM.from_pretrained(model_name) | |
| else: | |
| model = AutoModelForSequenceClassification.from_pretrained(model_name) | |
| return tokenizer, model | |
| except Exception as e: | |
| st.error(f"Error loading model: {e}") | |
| return None, None | |
| # Load the model and tokenizer | |
| tokenizer, model = load_model(model_name) | |
| # Input text box in the main panel | |
| st.title(f"{model_choice} Model") | |
| user_input = st.text_area("Enter text:") | |
| # Make prediction if user input is provided | |
| if user_input and model and tokenizer: | |
| if model_choice == "text2shellcommands": | |
| # For text2shellcommands model, generate shell commands | |
| inputs = tokenizer(user_input, return_tensors="pt", padding=True, truncation=True) | |
| with torch.no_grad(): | |
| outputs = model.generate(**inputs) | |
| generated_command = tokenizer.decode(outputs[0], skip_special_tokens=True) | |
| st.write(f"Generated Shell Command: {generated_command}") | |
| else: | |
| # For CyberAttackDetection and pentest_ai models, perform classification | |
| inputs = tokenizer(user_input, return_tensors="pt", padding=True, truncation=True) | |
| with torch.no_grad(): | |
| outputs = model(**inputs) | |
| logits = outputs.logits | |
| predicted_class = torch.argmax(logits, dim=-1).item() | |
| st.write(f"Predicted Class: {predicted_class}") | |
| st.write(f"Logits: {logits}") | |
| else: | |
| st.info("Please enter some text for prediction.") | |