Update Chest_Xray_Report_Generator-V2.py
Browse filesUpdate the main file of the Web APP Version (Version 2)
- Chest_Xray_Report_Generator-V2.py +225 -32
Chest_Xray_Report_Generator-V2.py
CHANGED
@@ -1,13 +1,20 @@
|
|
1 |
-
|
2 |
import transformers
|
3 |
from transformers import pipeline
|
|
|
|
|
4 |
import gradio as gr
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
5 |
import cv2
|
6 |
import numpy as np
|
7 |
import pydicom
|
8 |
-
import
|
9 |
-
|
10 |
-
import spaces # Import the spaces module for ZeroGPU
|
11 |
|
12 |
##### Libraries For Grad-Cam-View
|
13 |
import os
|
@@ -21,6 +28,17 @@ from pytorch_grad_cam.utils.image import show_cam_on_image, preprocess_image
|
|
21 |
from pytorch_grad_cam.ablation_layer import AblationLayerVit
|
22 |
from transformers import VisionEncoderDecoderModel
|
23 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
24 |
@spaces.GPU
|
25 |
def generate_gradcam(image_path, model_path, output_path, method='gradcam', use_cuda=True, aug_smooth=False, eigen_smooth=False):
|
26 |
methods = {
|
@@ -48,8 +66,8 @@ def generate_gradcam(image_path, model_path, output_path, method='gradcam', use_
|
|
48 |
|
49 |
#target_layers = [model.blocks[-1].norm1] ## For ViT model
|
50 |
#target_layers = model.blocks[-1].norm1 ## For EfficientNet-B7 model
|
51 |
-
target_layers = [model.encoder.encoder.layer[-1].layernorm_before] ## For ViT-based VisionEncoderDecoder model
|
52 |
-
|
53 |
|
54 |
|
55 |
if method == "ablationcam":
|
@@ -65,7 +83,7 @@ def generate_gradcam(image_path, model_path, output_path, method='gradcam', use_
|
|
65 |
reshape_transform=reshape_transform)
|
66 |
|
67 |
rgb_img = cv2.imread(image_path, 1)[:, :, ::-1]
|
68 |
-
rgb_img = cv2.resize(rgb_img, (
|
69 |
rgb_img = np.float32(rgb_img) / 255
|
70 |
input_tensor = preprocess_image(rgb_img, mean=[0.5, 0.5, 0.5], std=[0.5, 0.5, 0.5])
|
71 |
|
@@ -80,7 +98,8 @@ def generate_gradcam(image_path, model_path, output_path, method='gradcam', use_
|
|
80 |
cv2.imwrite(output_file, cam_image)
|
81 |
|
82 |
|
83 |
-
|
|
|
84 |
batch_size, token_number, embed_dim = tensor.size()
|
85 |
if token_number < height * width:
|
86 |
pad = torch.zeros(batch_size, height * width - token_number, embed_dim, device=tensor.device)
|
@@ -93,11 +112,9 @@ def reshape_transform(tensor, height=14, width=14): ### height=14, width=14 for
|
|
93 |
return result
|
94 |
|
95 |
|
96 |
-
|
97 |
-
|
98 |
# Example usage:
|
99 |
#image_path = "/home/chayan/CGI_Net/images/images/CXR1353_IM-0230-1001.png"
|
100 |
-
model_path = "./
|
101 |
output_path = "./CAM-Result/"
|
102 |
|
103 |
|
@@ -108,6 +125,50 @@ def sentence_case(paragraph):
|
|
108 |
formatted_paragraph = '. '.join(formatted_sentences)
|
109 |
return formatted_paragraph
|
110 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
111 |
def dicom_to_png(dicom_file, png_file):
|
112 |
# Load DICOM file
|
113 |
dicom_data = pydicom.dcmread(dicom_file)
|
@@ -125,12 +186,12 @@ def dicom_to_png(dicom_file, png_file):
|
|
125 |
return img
|
126 |
|
127 |
|
128 |
-
Image_Captioner = pipeline("image-to-text", model = "./
|
129 |
|
130 |
data_dir = "./CAM-Result"
|
131 |
|
132 |
@spaces.GPU(duration=300)
|
133 |
-
def xray_report_generator(Image_file):
|
134 |
if Image_file[-4:] =='.dcm':
|
135 |
png_file = 'DCM2PNG.png'
|
136 |
dicom_to_png(Image_file, png_file)
|
@@ -143,16 +204,32 @@ def xray_report_generator(Image_file):
|
|
143 |
result = output[0]['generated_text']
|
144 |
output_paragraph = sentence_case(result)
|
145 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
146 |
generate_gradcam(Image_file, model_path, output_path, method='gradcam', use_cuda=True)
|
147 |
|
148 |
grad_cam_image = output_path + 'gradcam_result.png'
|
149 |
|
150 |
-
return
|
151 |
-
|
152 |
|
153 |
|
154 |
# def save_feedback(feedback):
|
155 |
-
# feedback_dir = "
|
156 |
# if not os.path.exists(feedback_dir):
|
157 |
# os.makedirs(feedback_dir)
|
158 |
# feedback_file = os.path.join(feedback_dir, "feedback.txt")
|
@@ -161,7 +238,6 @@ def xray_report_generator(Image_file):
|
|
161 |
# return "Feedback submitted successfully!"
|
162 |
|
163 |
|
164 |
-
|
165 |
def save_feedback(feedback):
|
166 |
feedback_dir = "Chayan/Feedback/" # Update this to your desired directory
|
167 |
if not os.path.exists(feedback_dir):
|
@@ -177,11 +253,62 @@ def save_feedback(feedback):
|
|
177 |
print(f"Error saving feedback: {e}")
|
178 |
return "Failed to submit feedback!"
|
179 |
|
180 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
181 |
# Custom CSS styles
|
182 |
custom_css = """
|
183 |
<style>
|
184 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
185 |
#title {
|
186 |
color: green;
|
187 |
font-size: 36px;
|
@@ -192,15 +319,25 @@ custom_css = """
|
|
192 |
font-size: 22px;
|
193 |
}
|
194 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
195 |
|
196 |
#submit-btn {
|
197 |
-
background-color: #
|
198 |
color: green;
|
199 |
padding: 15px 32px;
|
200 |
text-align: center;
|
201 |
text-decoration: none;
|
202 |
display: inline-block;
|
203 |
-
font-size:
|
204 |
margin: 4px 2px;
|
205 |
cursor: pointer;
|
206 |
}
|
@@ -208,6 +345,7 @@ custom_css = """
|
|
208 |
background-color: #00FFFF;
|
209 |
}
|
210 |
|
|
|
211 |
.intext textarea {
|
212 |
color: green;
|
213 |
font-size: 20px;
|
@@ -262,16 +400,43 @@ def show_acknowledgment():
|
|
262 |
yield gr.update(visible=False)
|
263 |
|
264 |
|
265 |
-
with gr.Blocks(css
|
266 |
|
267 |
#gr.HTML(custom_css) # Inject custom CSS
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
268 |
|
269 |
gr.Markdown(
|
270 |
-
|
271 |
-
<h1 style="color:blue; font-size: 36px; font-weight: bold">Chest X-ray Report Generator</h1>
|
272 |
-
<p id="description">Upload an X-ray image and get its report with heat-map visualization.</p>
|
273 |
-
"""
|
274 |
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
275 |
|
276 |
with gr.Row():
|
277 |
inputs = gr.File(label="Upload Chest X-ray Image File", type="filepath")
|
@@ -279,17 +444,37 @@ with gr.Blocks(css = custom_css) as demo:
|
|
279 |
with gr.Row():
|
280 |
with gr.Column(scale=1, min_width=300):
|
281 |
outputs1 = gr.Image(label="Image Viewer")
|
|
|
282 |
with gr.Column(scale=1, min_width=300):
|
283 |
outputs2 = gr.Image(label="Grad_CAM-Visualization")
|
284 |
with gr.Column(scale=1, min_width=300):
|
285 |
outputs3 = gr.Textbox(label="Generated Report", elem_classes = "intext")
|
|
|
286 |
|
287 |
|
288 |
-
submit_btn = gr.Button("Generate Report", elem_id="submit-btn")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
289 |
submit_btn.click(
|
290 |
fn=xray_report_generator,
|
291 |
-
inputs=inputs,
|
292 |
-
outputs=[
|
293 |
|
294 |
|
295 |
gr.Markdown(
|
@@ -310,7 +495,6 @@ with gr.Blocks(css = custom_css) as demo:
|
|
310 |
)
|
311 |
|
312 |
|
313 |
-
|
314 |
# Feedback section
|
315 |
gr.Markdown(
|
316 |
"""
|
@@ -320,8 +504,10 @@ with gr.Blocks(css = custom_css) as demo:
|
|
320 |
|
321 |
with gr.Row():
|
322 |
feedback_input = gr.Textbox(label="Your Feedback", lines=4, placeholder="Enter your feedback here...")
|
323 |
-
feedback_submit_btn = gr.Button("Submit Feedback", elem_classes="small-button")
|
324 |
-
feedback_output = gr.Textbox(label="Feedback Status", interactive=
|
|
|
|
|
325 |
|
326 |
feedback_submit_btn.click(
|
327 |
fn=save_feedback,
|
@@ -329,6 +515,7 @@ with gr.Blocks(css = custom_css) as demo:
|
|
329 |
outputs=feedback_output
|
330 |
)
|
331 |
|
|
|
332 |
# Buttons and Markdown for Contact Us and Acknowledgment
|
333 |
with gr.Row():
|
334 |
contact_btn = gr.Button("Contact Us", elem_classes="small-button", variant="secondary")
|
@@ -339,6 +526,12 @@ with gr.Blocks(css = custom_css) as demo:
|
|
339 |
|
340 |
# Update the content and make it visible when the buttons are clicked
|
341 |
contact_btn.click(fn=show_contact_info, outputs=contact_info, show_progress=False)
|
342 |
-
ack_btn.click(fn=show_acknowledgment, outputs=acknowledgment_info, show_progress=False)
|
|
|
|
|
|
|
|
|
|
|
343 |
|
344 |
demo.launch(share=True)
|
|
|
|
1 |
+
iimport os
|
2 |
import transformers
|
3 |
from transformers import pipeline
|
4 |
+
|
5 |
+
### Gradio
|
6 |
import gradio as gr
|
7 |
+
from gradio.themes.base import Base
|
8 |
+
from gradio.themes.utils import colors, fonts, sizes
|
9 |
+
from typing import Union, Iterable
|
10 |
+
import time
|
11 |
+
#####
|
12 |
+
|
13 |
+
|
14 |
import cv2
|
15 |
import numpy as np
|
16 |
import pydicom
|
17 |
+
import re
|
|
|
|
|
18 |
|
19 |
##### Libraries For Grad-Cam-View
|
20 |
import os
|
|
|
28 |
from pytorch_grad_cam.ablation_layer import AblationLayerVit
|
29 |
from transformers import VisionEncoderDecoderModel
|
30 |
|
31 |
+
|
32 |
+
from transformers import AutoTokenizer
|
33 |
+
import transformers
|
34 |
+
import torch
|
35 |
+
|
36 |
+
from openai import OpenAI
|
37 |
+
client = OpenAI()
|
38 |
+
|
39 |
+
import spaces # Import the spaces module for ZeroGPU
|
40 |
+
|
41 |
+
|
42 |
@spaces.GPU
|
43 |
def generate_gradcam(image_path, model_path, output_path, method='gradcam', use_cuda=True, aug_smooth=False, eigen_smooth=False):
|
44 |
methods = {
|
|
|
66 |
|
67 |
#target_layers = [model.blocks[-1].norm1] ## For ViT model
|
68 |
#target_layers = model.blocks[-1].norm1 ## For EfficientNet-B7 model
|
69 |
+
#target_layers = [model.encoder.encoder.layer[-1].layernorm_before] ## For ViT-based VisionEncoderDecoder model
|
70 |
+
target_layers = [model.encoder.encoder.layers[-1].blocks[-0].layernorm_after, model.encoder.encoder.layers[-1].blocks[-1].layernorm_after] ## [model.encoder.encoder.layers[-1].blocks[-1].layernorm_before, model.encoder.encoder.layers[-1].blocks[0].layernorm_before] For Swin-based VisionEncoderDecoder model
|
71 |
|
72 |
|
73 |
if method == "ablationcam":
|
|
|
83 |
reshape_transform=reshape_transform)
|
84 |
|
85 |
rgb_img = cv2.imread(image_path, 1)[:, :, ::-1]
|
86 |
+
rgb_img = cv2.resize(rgb_img, (384, 384)) ## (224, 224)
|
87 |
rgb_img = np.float32(rgb_img) / 255
|
88 |
input_tensor = preprocess_image(rgb_img, mean=[0.5, 0.5, 0.5], std=[0.5, 0.5, 0.5])
|
89 |
|
|
|
98 |
cv2.imwrite(output_file, cam_image)
|
99 |
|
100 |
|
101 |
+
|
102 |
+
def reshape_transform(tensor, height=12, width=12): ### height=14, width=14 for ViT-based Model
|
103 |
batch_size, token_number, embed_dim = tensor.size()
|
104 |
if token_number < height * width:
|
105 |
pad = torch.zeros(batch_size, height * width - token_number, embed_dim, device=tensor.device)
|
|
|
112 |
return result
|
113 |
|
114 |
|
|
|
|
|
115 |
# Example usage:
|
116 |
#image_path = "/home/chayan/CGI_Net/images/images/CXR1353_IM-0230-1001.png"
|
117 |
+
model_path = "./Model/"
|
118 |
output_path = "./CAM-Result/"
|
119 |
|
120 |
|
|
|
125 |
formatted_paragraph = '. '.join(formatted_sentences)
|
126 |
return formatted_paragraph
|
127 |
|
128 |
+
def num2sym_bullets(text, bullet='-'):
|
129 |
+
"""
|
130 |
+
Replaces '<num>.' bullet points with a specified symbol and formats the text as a bullet list.
|
131 |
+
|
132 |
+
Args:
|
133 |
+
text (str): Input text containing '<num>.' bullet points.
|
134 |
+
bullet (str): The symbol to replace '<num>.' with.
|
135 |
+
|
136 |
+
Returns:
|
137 |
+
str: Modified text with '<num>.' replaced and formatted as a bullet list.
|
138 |
+
"""
|
139 |
+
sentences = re.split(r'<num>\.\s', text)
|
140 |
+
formatted_text = '\n'.join(f'{bullet} {sentence.strip()}' for sentence in sentences if sentence.strip())
|
141 |
+
return formatted_text
|
142 |
+
|
143 |
+
def is_cxr(image_path):
|
144 |
+
"""
|
145 |
+
Checks if the uploaded image is a Chest X-ray using basic image processing.
|
146 |
+
|
147 |
+
Args:
|
148 |
+
image_path (str): Path to the uploaded image.
|
149 |
+
|
150 |
+
Returns:
|
151 |
+
bool: True if the image is likely a Chest X-ray, False otherwise.
|
152 |
+
"""
|
153 |
+
try:
|
154 |
+
|
155 |
+
image = cv2.imread(image_path)
|
156 |
+
|
157 |
+
if image is None:
|
158 |
+
raise ValueError("Invalid image path.")
|
159 |
+
|
160 |
+
gray = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY)
|
161 |
+
color_std = np.std(image, axis=2).mean()
|
162 |
+
|
163 |
+
if color_std > 0:
|
164 |
+
return False
|
165 |
+
|
166 |
+
return True
|
167 |
+
|
168 |
+
except Exception as e:
|
169 |
+
print(f"Error processing image: {e}")
|
170 |
+
return False
|
171 |
+
|
172 |
def dicom_to_png(dicom_file, png_file):
|
173 |
# Load DICOM file
|
174 |
dicom_data = pydicom.dcmread(dicom_file)
|
|
|
186 |
return img
|
187 |
|
188 |
|
189 |
+
Image_Captioner = pipeline("image-to-text", model = "./Model/", device = 0)
|
190 |
|
191 |
data_dir = "./CAM-Result"
|
192 |
|
193 |
@spaces.GPU(duration=300)
|
194 |
+
def xray_report_generator(Image_file, Query):
|
195 |
if Image_file[-4:] =='.dcm':
|
196 |
png_file = 'DCM2PNG.png'
|
197 |
dicom_to_png(Image_file, png_file)
|
|
|
204 |
result = output[0]['generated_text']
|
205 |
output_paragraph = sentence_case(result)
|
206 |
|
207 |
+
final_response = num2sym_bullets(output_paragraph, bullet='-')
|
208 |
+
|
209 |
+
query_prompt = f""" You are analyzing the doctor's query based on the patient's history and the generated chest X-ray report. Extract only the information relevant to the query.
|
210 |
+
If the report mentions the queried condition, write only the exact wording without any introduction. If the condition is not mentioned, respond with: 'No relevant findings related to [query condition].'.
|
211 |
+
"""
|
212 |
+
|
213 |
+
#If the condition is negated, respond with: 'There is no [query condition].'.
|
214 |
+
|
215 |
+
completion = client.chat.completions.create(
|
216 |
+
model="gpt-4-turbo", ### gpt-4-turbo ### gpt-3.5-turbo-0125
|
217 |
+
messages=[
|
218 |
+
{"role": "system", "content": query_prompt},
|
219 |
+
{"role": "user", "content": f"Generated Report: {final_response}\nHistory/Doctor's Query: {Query}"}
|
220 |
+
],
|
221 |
+
temperature=0.2)
|
222 |
+
query_response = completion.choices[0].message.content
|
223 |
+
|
224 |
generate_gradcam(Image_file, model_path, output_path, method='gradcam', use_cuda=True)
|
225 |
|
226 |
grad_cam_image = output_path + 'gradcam_result.png'
|
227 |
|
228 |
+
return grad_cam_image, final_response, query_response
|
|
|
229 |
|
230 |
|
231 |
# def save_feedback(feedback):
|
232 |
+
# feedback_dir = "Chayan/Feedback/" # Update this to your desired directory
|
233 |
# if not os.path.exists(feedback_dir):
|
234 |
# os.makedirs(feedback_dir)
|
235 |
# feedback_file = os.path.join(feedback_dir, "feedback.txt")
|
|
|
238 |
# return "Feedback submitted successfully!"
|
239 |
|
240 |
|
|
|
241 |
def save_feedback(feedback):
|
242 |
feedback_dir = "Chayan/Feedback/" # Update this to your desired directory
|
243 |
if not os.path.exists(feedback_dir):
|
|
|
253 |
print(f"Error saving feedback: {e}")
|
254 |
return "Failed to submit feedback!"
|
255 |
|
256 |
+
|
257 |
+
# Custom Theme Definition
|
258 |
+
class Seafoam(Base):
|
259 |
+
def __init__(
|
260 |
+
self,
|
261 |
+
*,
|
262 |
+
primary_hue: Union[colors.Color, str] = colors.emerald,
|
263 |
+
secondary_hue: Union[colors.Color, str] = colors.blue,
|
264 |
+
neutral_hue: Union[colors.Color, str] = colors.gray,
|
265 |
+
spacing_size: Union[sizes.Size, str] = sizes.spacing_md,
|
266 |
+
radius_size: Union[sizes.Size, str] = sizes.radius_md,
|
267 |
+
text_size: Union[sizes.Size, str] = sizes.text_lg,
|
268 |
+
font: Union[fonts.Font, str, Iterable[Union[fonts.Font, str]]] = (
|
269 |
+
fonts.GoogleFont("Quicksand"),
|
270 |
+
"ui-sans-serif",
|
271 |
+
"sans-serif",
|
272 |
+
),
|
273 |
+
font_mono: Union[fonts.Font, str, Iterable[Union[fonts.Font, str]]] = (
|
274 |
+
fonts.GoogleFont("IBM Plex Mono"),
|
275 |
+
"ui-monospace",
|
276 |
+
"monospace",
|
277 |
+
),
|
278 |
+
):
|
279 |
+
super().__init__(
|
280 |
+
primary_hue=primary_hue,
|
281 |
+
secondary_hue=secondary_hue,
|
282 |
+
neutral_hue=neutral_hue,
|
283 |
+
spacing_size=spacing_size,
|
284 |
+
radius_size=radius_size,
|
285 |
+
text_size=text_size,
|
286 |
+
font=font,
|
287 |
+
font_mono=font_mono,
|
288 |
+
)
|
289 |
+
|
290 |
+
self.set(
|
291 |
+
body_background_fill="linear-gradient(114.2deg, rgba(184,215,21,1) -15.3%, rgba(21,215,98,1) 14.5%, rgba(21,215,182,1) 38.7%, rgba(129,189,240,1) 58.8%, rgba(219,108,205,1) 77.3%, rgba(240,129,129,1) 88.5%)"
|
292 |
+
)
|
293 |
+
# Initialize the theme
|
294 |
+
seafoam = Seafoam()
|
295 |
+
|
296 |
+
|
297 |
+
|
298 |
# Custom CSS styles
|
299 |
custom_css = """
|
300 |
<style>
|
301 |
|
302 |
+
/* Set background color for the entire Gradio app */
|
303 |
+
body, .gradio-container {
|
304 |
+
background-color: #f2f7f5 !important;
|
305 |
+
}
|
306 |
+
|
307 |
+
/* Optional: Add padding or margin for aesthetics */
|
308 |
+
.gradio-container {
|
309 |
+
padding: 20px;
|
310 |
+
}
|
311 |
+
|
312 |
#title {
|
313 |
color: green;
|
314 |
font-size: 36px;
|
|
|
319 |
font-size: 22px;
|
320 |
}
|
321 |
|
322 |
+
#title-row {
|
323 |
+
display: flex;
|
324 |
+
align-items: center;
|
325 |
+
gap: 10px;
|
326 |
+
margin-bottom: 0px;
|
327 |
+
}
|
328 |
+
#title-header h1 {
|
329 |
+
margin: 0;
|
330 |
+
}
|
331 |
+
|
332 |
|
333 |
#submit-btn {
|
334 |
+
background-color: #f5dec6; /* Banana leaf */
|
335 |
color: green;
|
336 |
padding: 15px 32px;
|
337 |
text-align: center;
|
338 |
text-decoration: none;
|
339 |
display: inline-block;
|
340 |
+
font-size: 30px;
|
341 |
margin: 4px 2px;
|
342 |
cursor: pointer;
|
343 |
}
|
|
|
345 |
background-color: #00FFFF;
|
346 |
}
|
347 |
|
348 |
+
|
349 |
.intext textarea {
|
350 |
color: green;
|
351 |
font-size: 20px;
|
|
|
400 |
yield gr.update(visible=False)
|
401 |
|
402 |
|
403 |
+
with gr.Blocks(theme=seafoam, css=custom_css) as demo:
|
404 |
|
405 |
#gr.HTML(custom_css) # Inject custom CSS
|
406 |
+
|
407 |
+
|
408 |
+
with gr.Row(elem_id="title-row"):
|
409 |
+
with gr.Column(scale=0):
|
410 |
+
gr.Image(
|
411 |
+
value="./AURA-CXR-Logo.png",
|
412 |
+
show_label=False,
|
413 |
+
width=60,
|
414 |
+
container=False
|
415 |
+
)
|
416 |
+
with gr.Column():
|
417 |
+
gr.Markdown(
|
418 |
+
"""
|
419 |
+
<h1 style="color:blue; font-size: 32px; font-weight: bold; margin: 0;">
|
420 |
+
AURA-CXR: Explainable Diagnosis of Chest Diseases from X-rays
|
421 |
+
</h1>
|
422 |
+
""",
|
423 |
+
elem_id="title-header"
|
424 |
+
)
|
425 |
|
426 |
gr.Markdown(
|
427 |
+
"<p id='description'>Upload an X-ray image and get its report with heat-map visualization.</p>"
|
|
|
|
|
|
|
428 |
)
|
429 |
+
|
430 |
+
|
431 |
+
|
432 |
+
# gr.Markdown(
|
433 |
+
# """
|
434 |
+
# <h1 style="color:blue; font-size: 36px; font-weight: bold; margin: 0;">AURA-CXR: Explainable Diagnosis of Chest Diseases from X-rays</h1>
|
435 |
+
# <p id="description">Upload an X-ray image and get its report with heat-map visualization.</p>
|
436 |
+
# """
|
437 |
+
# )
|
438 |
+
|
439 |
+
#<h1 style="color:blue; font-size: 36px; font-weight: bold">AURA-CXR: Explainable Diagnosis of Chest Diseases from X-rays</h1>
|
440 |
|
441 |
with gr.Row():
|
442 |
inputs = gr.File(label="Upload Chest X-ray Image File", type="filepath")
|
|
|
444 |
with gr.Row():
|
445 |
with gr.Column(scale=1, min_width=300):
|
446 |
outputs1 = gr.Image(label="Image Viewer")
|
447 |
+
history_query = gr.Textbox(label="History/Doctor's Query", elem_classes="intext")
|
448 |
with gr.Column(scale=1, min_width=300):
|
449 |
outputs2 = gr.Image(label="Grad_CAM-Visualization")
|
450 |
with gr.Column(scale=1, min_width=300):
|
451 |
outputs3 = gr.Textbox(label="Generated Report", elem_classes = "intext")
|
452 |
+
outputs4 = gr.Textbox(label = "Query's Response", elem_classes = "intext")
|
453 |
|
454 |
|
455 |
+
submit_btn = gr.Button("Generate Report", elem_id="submit-btn", variant="primary")
|
456 |
+
|
457 |
+
def show_image(file_path):
|
458 |
+
if is_cxr(file_path): # Check if it's a valid Chest X-ray
|
459 |
+
return file_path, "Valid Image" # Show the image in Image Viewer
|
460 |
+
else:
|
461 |
+
return None, "Invalid image. Please upload a proper Chest X-ray."
|
462 |
+
|
463 |
+
|
464 |
+
# Show the uploaded image immediately in the Image Viewer
|
465 |
+
inputs.change(
|
466 |
+
fn=show_image, # Calls the function to return the same file path
|
467 |
+
inputs=inputs,
|
468 |
+
outputs=[outputs1, outputs3]
|
469 |
+
)
|
470 |
+
|
471 |
+
|
472 |
+
|
473 |
+
|
474 |
submit_btn.click(
|
475 |
fn=xray_report_generator,
|
476 |
+
inputs=[inputs,history_query],
|
477 |
+
outputs=[outputs2, outputs3, outputs4])
|
478 |
|
479 |
|
480 |
gr.Markdown(
|
|
|
495 |
)
|
496 |
|
497 |
|
|
|
498 |
# Feedback section
|
499 |
gr.Markdown(
|
500 |
"""
|
|
|
504 |
|
505 |
with gr.Row():
|
506 |
feedback_input = gr.Textbox(label="Your Feedback", lines=4, placeholder="Enter your feedback here...")
|
507 |
+
feedback_submit_btn = gr.Button("Submit Feedback", elem_classes="small-button", variant="secondary")
|
508 |
+
feedback_output = gr.Textbox(label="Feedback Status", interactive=False)
|
509 |
+
|
510 |
+
|
511 |
|
512 |
feedback_submit_btn.click(
|
513 |
fn=save_feedback,
|
|
|
515 |
outputs=feedback_output
|
516 |
)
|
517 |
|
518 |
+
|
519 |
# Buttons and Markdown for Contact Us and Acknowledgment
|
520 |
with gr.Row():
|
521 |
contact_btn = gr.Button("Contact Us", elem_classes="small-button", variant="secondary")
|
|
|
526 |
|
527 |
# Update the content and make it visible when the buttons are clicked
|
528 |
contact_btn.click(fn=show_contact_info, outputs=contact_info, show_progress=False)
|
529 |
+
ack_btn.click(fn=show_acknowledgment, outputs=acknowledgment_info, show_progress=False)
|
530 |
+
|
531 |
+
# Update the content and make it visible when the buttons are clicked
|
532 |
+
# contact_btn.click(fn=show_contact_info, outputs=contact_info, show_progress=False)
|
533 |
+
# ack_btn.click(fn=show_acknowledgment, outputs=acknowledgment_info, show_progress=False)
|
534 |
+
|
535 |
|
536 |
demo.launch(share=True)
|
537 |
+
|