Update Chest_Xray_Report_Generator-V2.py
Browse filesUpdate the main file of the Web APP Version (Version 2)
- Chest_Xray_Report_Generator-V2.py +225 -32
Chest_Xray_Report_Generator-V2.py
CHANGED
|
@@ -1,13 +1,20 @@
|
|
| 1 |
-
|
| 2 |
import transformers
|
| 3 |
from transformers import pipeline
|
|
|
|
|
|
|
| 4 |
import gradio as gr
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 5 |
import cv2
|
| 6 |
import numpy as np
|
| 7 |
import pydicom
|
| 8 |
-
import
|
| 9 |
-
|
| 10 |
-
import spaces # Import the spaces module for ZeroGPU
|
| 11 |
|
| 12 |
##### Libraries For Grad-Cam-View
|
| 13 |
import os
|
|
@@ -21,6 +28,17 @@ from pytorch_grad_cam.utils.image import show_cam_on_image, preprocess_image
|
|
| 21 |
from pytorch_grad_cam.ablation_layer import AblationLayerVit
|
| 22 |
from transformers import VisionEncoderDecoderModel
|
| 23 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 24 |
@spaces.GPU
|
| 25 |
def generate_gradcam(image_path, model_path, output_path, method='gradcam', use_cuda=True, aug_smooth=False, eigen_smooth=False):
|
| 26 |
methods = {
|
|
@@ -48,8 +66,8 @@ def generate_gradcam(image_path, model_path, output_path, method='gradcam', use_
|
|
| 48 |
|
| 49 |
#target_layers = [model.blocks[-1].norm1] ## For ViT model
|
| 50 |
#target_layers = model.blocks[-1].norm1 ## For EfficientNet-B7 model
|
| 51 |
-
target_layers = [model.encoder.encoder.layer[-1].layernorm_before] ## For ViT-based VisionEncoderDecoder model
|
| 52 |
-
|
| 53 |
|
| 54 |
|
| 55 |
if method == "ablationcam":
|
|
@@ -65,7 +83,7 @@ def generate_gradcam(image_path, model_path, output_path, method='gradcam', use_
|
|
| 65 |
reshape_transform=reshape_transform)
|
| 66 |
|
| 67 |
rgb_img = cv2.imread(image_path, 1)[:, :, ::-1]
|
| 68 |
-
rgb_img = cv2.resize(rgb_img, (
|
| 69 |
rgb_img = np.float32(rgb_img) / 255
|
| 70 |
input_tensor = preprocess_image(rgb_img, mean=[0.5, 0.5, 0.5], std=[0.5, 0.5, 0.5])
|
| 71 |
|
|
@@ -80,7 +98,8 @@ def generate_gradcam(image_path, model_path, output_path, method='gradcam', use_
|
|
| 80 |
cv2.imwrite(output_file, cam_image)
|
| 81 |
|
| 82 |
|
| 83 |
-
|
|
|
|
| 84 |
batch_size, token_number, embed_dim = tensor.size()
|
| 85 |
if token_number < height * width:
|
| 86 |
pad = torch.zeros(batch_size, height * width - token_number, embed_dim, device=tensor.device)
|
|
@@ -93,11 +112,9 @@ def reshape_transform(tensor, height=14, width=14): ### height=14, width=14 for
|
|
| 93 |
return result
|
| 94 |
|
| 95 |
|
| 96 |
-
|
| 97 |
-
|
| 98 |
# Example usage:
|
| 99 |
#image_path = "/home/chayan/CGI_Net/images/images/CXR1353_IM-0230-1001.png"
|
| 100 |
-
model_path = "./
|
| 101 |
output_path = "./CAM-Result/"
|
| 102 |
|
| 103 |
|
|
@@ -108,6 +125,50 @@ def sentence_case(paragraph):
|
|
| 108 |
formatted_paragraph = '. '.join(formatted_sentences)
|
| 109 |
return formatted_paragraph
|
| 110 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 111 |
def dicom_to_png(dicom_file, png_file):
|
| 112 |
# Load DICOM file
|
| 113 |
dicom_data = pydicom.dcmread(dicom_file)
|
|
@@ -125,12 +186,12 @@ def dicom_to_png(dicom_file, png_file):
|
|
| 125 |
return img
|
| 126 |
|
| 127 |
|
| 128 |
-
Image_Captioner = pipeline("image-to-text", model = "./
|
| 129 |
|
| 130 |
data_dir = "./CAM-Result"
|
| 131 |
|
| 132 |
@spaces.GPU(duration=300)
|
| 133 |
-
def xray_report_generator(Image_file):
|
| 134 |
if Image_file[-4:] =='.dcm':
|
| 135 |
png_file = 'DCM2PNG.png'
|
| 136 |
dicom_to_png(Image_file, png_file)
|
|
@@ -143,16 +204,32 @@ def xray_report_generator(Image_file):
|
|
| 143 |
result = output[0]['generated_text']
|
| 144 |
output_paragraph = sentence_case(result)
|
| 145 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 146 |
generate_gradcam(Image_file, model_path, output_path, method='gradcam', use_cuda=True)
|
| 147 |
|
| 148 |
grad_cam_image = output_path + 'gradcam_result.png'
|
| 149 |
|
| 150 |
-
return
|
| 151 |
-
|
| 152 |
|
| 153 |
|
| 154 |
# def save_feedback(feedback):
|
| 155 |
-
# feedback_dir = "
|
| 156 |
# if not os.path.exists(feedback_dir):
|
| 157 |
# os.makedirs(feedback_dir)
|
| 158 |
# feedback_file = os.path.join(feedback_dir, "feedback.txt")
|
|
@@ -161,7 +238,6 @@ def xray_report_generator(Image_file):
|
|
| 161 |
# return "Feedback submitted successfully!"
|
| 162 |
|
| 163 |
|
| 164 |
-
|
| 165 |
def save_feedback(feedback):
|
| 166 |
feedback_dir = "Chayan/Feedback/" # Update this to your desired directory
|
| 167 |
if not os.path.exists(feedback_dir):
|
|
@@ -177,11 +253,62 @@ def save_feedback(feedback):
|
|
| 177 |
print(f"Error saving feedback: {e}")
|
| 178 |
return "Failed to submit feedback!"
|
| 179 |
|
| 180 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 181 |
# Custom CSS styles
|
| 182 |
custom_css = """
|
| 183 |
<style>
|
| 184 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 185 |
#title {
|
| 186 |
color: green;
|
| 187 |
font-size: 36px;
|
|
@@ -192,15 +319,25 @@ custom_css = """
|
|
| 192 |
font-size: 22px;
|
| 193 |
}
|
| 194 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 195 |
|
| 196 |
#submit-btn {
|
| 197 |
-
background-color: #
|
| 198 |
color: green;
|
| 199 |
padding: 15px 32px;
|
| 200 |
text-align: center;
|
| 201 |
text-decoration: none;
|
| 202 |
display: inline-block;
|
| 203 |
-
font-size:
|
| 204 |
margin: 4px 2px;
|
| 205 |
cursor: pointer;
|
| 206 |
}
|
|
@@ -208,6 +345,7 @@ custom_css = """
|
|
| 208 |
background-color: #00FFFF;
|
| 209 |
}
|
| 210 |
|
|
|
|
| 211 |
.intext textarea {
|
| 212 |
color: green;
|
| 213 |
font-size: 20px;
|
|
@@ -262,16 +400,43 @@ def show_acknowledgment():
|
|
| 262 |
yield gr.update(visible=False)
|
| 263 |
|
| 264 |
|
| 265 |
-
with gr.Blocks(css
|
| 266 |
|
| 267 |
#gr.HTML(custom_css) # Inject custom CSS
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 268 |
|
| 269 |
gr.Markdown(
|
| 270 |
-
|
| 271 |
-
<h1 style="color:blue; font-size: 36px; font-weight: bold">Chest X-ray Report Generator</h1>
|
| 272 |
-
<p id="description">Upload an X-ray image and get its report with heat-map visualization.</p>
|
| 273 |
-
"""
|
| 274 |
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 275 |
|
| 276 |
with gr.Row():
|
| 277 |
inputs = gr.File(label="Upload Chest X-ray Image File", type="filepath")
|
|
@@ -279,17 +444,37 @@ with gr.Blocks(css = custom_css) as demo:
|
|
| 279 |
with gr.Row():
|
| 280 |
with gr.Column(scale=1, min_width=300):
|
| 281 |
outputs1 = gr.Image(label="Image Viewer")
|
|
|
|
| 282 |
with gr.Column(scale=1, min_width=300):
|
| 283 |
outputs2 = gr.Image(label="Grad_CAM-Visualization")
|
| 284 |
with gr.Column(scale=1, min_width=300):
|
| 285 |
outputs3 = gr.Textbox(label="Generated Report", elem_classes = "intext")
|
|
|
|
| 286 |
|
| 287 |
|
| 288 |
-
submit_btn = gr.Button("Generate Report", elem_id="submit-btn")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 289 |
submit_btn.click(
|
| 290 |
fn=xray_report_generator,
|
| 291 |
-
inputs=inputs,
|
| 292 |
-
outputs=[
|
| 293 |
|
| 294 |
|
| 295 |
gr.Markdown(
|
|
@@ -310,7 +495,6 @@ with gr.Blocks(css = custom_css) as demo:
|
|
| 310 |
)
|
| 311 |
|
| 312 |
|
| 313 |
-
|
| 314 |
# Feedback section
|
| 315 |
gr.Markdown(
|
| 316 |
"""
|
|
@@ -320,8 +504,10 @@ with gr.Blocks(css = custom_css) as demo:
|
|
| 320 |
|
| 321 |
with gr.Row():
|
| 322 |
feedback_input = gr.Textbox(label="Your Feedback", lines=4, placeholder="Enter your feedback here...")
|
| 323 |
-
feedback_submit_btn = gr.Button("Submit Feedback", elem_classes="small-button")
|
| 324 |
-
feedback_output = gr.Textbox(label="Feedback Status", interactive=
|
|
|
|
|
|
|
| 325 |
|
| 326 |
feedback_submit_btn.click(
|
| 327 |
fn=save_feedback,
|
|
@@ -329,6 +515,7 @@ with gr.Blocks(css = custom_css) as demo:
|
|
| 329 |
outputs=feedback_output
|
| 330 |
)
|
| 331 |
|
|
|
|
| 332 |
# Buttons and Markdown for Contact Us and Acknowledgment
|
| 333 |
with gr.Row():
|
| 334 |
contact_btn = gr.Button("Contact Us", elem_classes="small-button", variant="secondary")
|
|
@@ -339,6 +526,12 @@ with gr.Blocks(css = custom_css) as demo:
|
|
| 339 |
|
| 340 |
# Update the content and make it visible when the buttons are clicked
|
| 341 |
contact_btn.click(fn=show_contact_info, outputs=contact_info, show_progress=False)
|
| 342 |
-
ack_btn.click(fn=show_acknowledgment, outputs=acknowledgment_info, show_progress=False)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 343 |
|
| 344 |
demo.launch(share=True)
|
|
|
|
|
|
| 1 |
+
iimport os
|
| 2 |
import transformers
|
| 3 |
from transformers import pipeline
|
| 4 |
+
|
| 5 |
+
### Gradio
|
| 6 |
import gradio as gr
|
| 7 |
+
from gradio.themes.base import Base
|
| 8 |
+
from gradio.themes.utils import colors, fonts, sizes
|
| 9 |
+
from typing import Union, Iterable
|
| 10 |
+
import time
|
| 11 |
+
#####
|
| 12 |
+
|
| 13 |
+
|
| 14 |
import cv2
|
| 15 |
import numpy as np
|
| 16 |
import pydicom
|
| 17 |
+
import re
|
|
|
|
|
|
|
| 18 |
|
| 19 |
##### Libraries For Grad-Cam-View
|
| 20 |
import os
|
|
|
|
| 28 |
from pytorch_grad_cam.ablation_layer import AblationLayerVit
|
| 29 |
from transformers import VisionEncoderDecoderModel
|
| 30 |
|
| 31 |
+
|
| 32 |
+
from transformers import AutoTokenizer
|
| 33 |
+
import transformers
|
| 34 |
+
import torch
|
| 35 |
+
|
| 36 |
+
from openai import OpenAI
|
| 37 |
+
client = OpenAI()
|
| 38 |
+
|
| 39 |
+
import spaces # Import the spaces module for ZeroGPU
|
| 40 |
+
|
| 41 |
+
|
| 42 |
@spaces.GPU
|
| 43 |
def generate_gradcam(image_path, model_path, output_path, method='gradcam', use_cuda=True, aug_smooth=False, eigen_smooth=False):
|
| 44 |
methods = {
|
|
|
|
| 66 |
|
| 67 |
#target_layers = [model.blocks[-1].norm1] ## For ViT model
|
| 68 |
#target_layers = model.blocks[-1].norm1 ## For EfficientNet-B7 model
|
| 69 |
+
#target_layers = [model.encoder.encoder.layer[-1].layernorm_before] ## For ViT-based VisionEncoderDecoder model
|
| 70 |
+
target_layers = [model.encoder.encoder.layers[-1].blocks[-0].layernorm_after, model.encoder.encoder.layers[-1].blocks[-1].layernorm_after] ## [model.encoder.encoder.layers[-1].blocks[-1].layernorm_before, model.encoder.encoder.layers[-1].blocks[0].layernorm_before] For Swin-based VisionEncoderDecoder model
|
| 71 |
|
| 72 |
|
| 73 |
if method == "ablationcam":
|
|
|
|
| 83 |
reshape_transform=reshape_transform)
|
| 84 |
|
| 85 |
rgb_img = cv2.imread(image_path, 1)[:, :, ::-1]
|
| 86 |
+
rgb_img = cv2.resize(rgb_img, (384, 384)) ## (224, 224)
|
| 87 |
rgb_img = np.float32(rgb_img) / 255
|
| 88 |
input_tensor = preprocess_image(rgb_img, mean=[0.5, 0.5, 0.5], std=[0.5, 0.5, 0.5])
|
| 89 |
|
|
|
|
| 98 |
cv2.imwrite(output_file, cam_image)
|
| 99 |
|
| 100 |
|
| 101 |
+
|
| 102 |
+
def reshape_transform(tensor, height=12, width=12): ### height=14, width=14 for ViT-based Model
|
| 103 |
batch_size, token_number, embed_dim = tensor.size()
|
| 104 |
if token_number < height * width:
|
| 105 |
pad = torch.zeros(batch_size, height * width - token_number, embed_dim, device=tensor.device)
|
|
|
|
| 112 |
return result
|
| 113 |
|
| 114 |
|
|
|
|
|
|
|
| 115 |
# Example usage:
|
| 116 |
#image_path = "/home/chayan/CGI_Net/images/images/CXR1353_IM-0230-1001.png"
|
| 117 |
+
model_path = "./Model/"
|
| 118 |
output_path = "./CAM-Result/"
|
| 119 |
|
| 120 |
|
|
|
|
| 125 |
formatted_paragraph = '. '.join(formatted_sentences)
|
| 126 |
return formatted_paragraph
|
| 127 |
|
| 128 |
+
def num2sym_bullets(text, bullet='-'):
|
| 129 |
+
"""
|
| 130 |
+
Replaces '<num>.' bullet points with a specified symbol and formats the text as a bullet list.
|
| 131 |
+
|
| 132 |
+
Args:
|
| 133 |
+
text (str): Input text containing '<num>.' bullet points.
|
| 134 |
+
bullet (str): The symbol to replace '<num>.' with.
|
| 135 |
+
|
| 136 |
+
Returns:
|
| 137 |
+
str: Modified text with '<num>.' replaced and formatted as a bullet list.
|
| 138 |
+
"""
|
| 139 |
+
sentences = re.split(r'<num>\.\s', text)
|
| 140 |
+
formatted_text = '\n'.join(f'{bullet} {sentence.strip()}' for sentence in sentences if sentence.strip())
|
| 141 |
+
return formatted_text
|
| 142 |
+
|
| 143 |
+
def is_cxr(image_path):
|
| 144 |
+
"""
|
| 145 |
+
Checks if the uploaded image is a Chest X-ray using basic image processing.
|
| 146 |
+
|
| 147 |
+
Args:
|
| 148 |
+
image_path (str): Path to the uploaded image.
|
| 149 |
+
|
| 150 |
+
Returns:
|
| 151 |
+
bool: True if the image is likely a Chest X-ray, False otherwise.
|
| 152 |
+
"""
|
| 153 |
+
try:
|
| 154 |
+
|
| 155 |
+
image = cv2.imread(image_path)
|
| 156 |
+
|
| 157 |
+
if image is None:
|
| 158 |
+
raise ValueError("Invalid image path.")
|
| 159 |
+
|
| 160 |
+
gray = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY)
|
| 161 |
+
color_std = np.std(image, axis=2).mean()
|
| 162 |
+
|
| 163 |
+
if color_std > 0:
|
| 164 |
+
return False
|
| 165 |
+
|
| 166 |
+
return True
|
| 167 |
+
|
| 168 |
+
except Exception as e:
|
| 169 |
+
print(f"Error processing image: {e}")
|
| 170 |
+
return False
|
| 171 |
+
|
| 172 |
def dicom_to_png(dicom_file, png_file):
|
| 173 |
# Load DICOM file
|
| 174 |
dicom_data = pydicom.dcmread(dicom_file)
|
|
|
|
| 186 |
return img
|
| 187 |
|
| 188 |
|
| 189 |
+
Image_Captioner = pipeline("image-to-text", model = "./Model/", device = 0)
|
| 190 |
|
| 191 |
data_dir = "./CAM-Result"
|
| 192 |
|
| 193 |
@spaces.GPU(duration=300)
|
| 194 |
+
def xray_report_generator(Image_file, Query):
|
| 195 |
if Image_file[-4:] =='.dcm':
|
| 196 |
png_file = 'DCM2PNG.png'
|
| 197 |
dicom_to_png(Image_file, png_file)
|
|
|
|
| 204 |
result = output[0]['generated_text']
|
| 205 |
output_paragraph = sentence_case(result)
|
| 206 |
|
| 207 |
+
final_response = num2sym_bullets(output_paragraph, bullet='-')
|
| 208 |
+
|
| 209 |
+
query_prompt = f""" You are analyzing the doctor's query based on the patient's history and the generated chest X-ray report. Extract only the information relevant to the query.
|
| 210 |
+
If the report mentions the queried condition, write only the exact wording without any introduction. If the condition is not mentioned, respond with: 'No relevant findings related to [query condition].'.
|
| 211 |
+
"""
|
| 212 |
+
|
| 213 |
+
#If the condition is negated, respond with: 'There is no [query condition].'.
|
| 214 |
+
|
| 215 |
+
completion = client.chat.completions.create(
|
| 216 |
+
model="gpt-4-turbo", ### gpt-4-turbo ### gpt-3.5-turbo-0125
|
| 217 |
+
messages=[
|
| 218 |
+
{"role": "system", "content": query_prompt},
|
| 219 |
+
{"role": "user", "content": f"Generated Report: {final_response}\nHistory/Doctor's Query: {Query}"}
|
| 220 |
+
],
|
| 221 |
+
temperature=0.2)
|
| 222 |
+
query_response = completion.choices[0].message.content
|
| 223 |
+
|
| 224 |
generate_gradcam(Image_file, model_path, output_path, method='gradcam', use_cuda=True)
|
| 225 |
|
| 226 |
grad_cam_image = output_path + 'gradcam_result.png'
|
| 227 |
|
| 228 |
+
return grad_cam_image, final_response, query_response
|
|
|
|
| 229 |
|
| 230 |
|
| 231 |
# def save_feedback(feedback):
|
| 232 |
+
# feedback_dir = "Chayan/Feedback/" # Update this to your desired directory
|
| 233 |
# if not os.path.exists(feedback_dir):
|
| 234 |
# os.makedirs(feedback_dir)
|
| 235 |
# feedback_file = os.path.join(feedback_dir, "feedback.txt")
|
|
|
|
| 238 |
# return "Feedback submitted successfully!"
|
| 239 |
|
| 240 |
|
|
|
|
| 241 |
def save_feedback(feedback):
|
| 242 |
feedback_dir = "Chayan/Feedback/" # Update this to your desired directory
|
| 243 |
if not os.path.exists(feedback_dir):
|
|
|
|
| 253 |
print(f"Error saving feedback: {e}")
|
| 254 |
return "Failed to submit feedback!"
|
| 255 |
|
| 256 |
+
|
| 257 |
+
# Custom Theme Definition
|
| 258 |
+
class Seafoam(Base):
|
| 259 |
+
def __init__(
|
| 260 |
+
self,
|
| 261 |
+
*,
|
| 262 |
+
primary_hue: Union[colors.Color, str] = colors.emerald,
|
| 263 |
+
secondary_hue: Union[colors.Color, str] = colors.blue,
|
| 264 |
+
neutral_hue: Union[colors.Color, str] = colors.gray,
|
| 265 |
+
spacing_size: Union[sizes.Size, str] = sizes.spacing_md,
|
| 266 |
+
radius_size: Union[sizes.Size, str] = sizes.radius_md,
|
| 267 |
+
text_size: Union[sizes.Size, str] = sizes.text_lg,
|
| 268 |
+
font: Union[fonts.Font, str, Iterable[Union[fonts.Font, str]]] = (
|
| 269 |
+
fonts.GoogleFont("Quicksand"),
|
| 270 |
+
"ui-sans-serif",
|
| 271 |
+
"sans-serif",
|
| 272 |
+
),
|
| 273 |
+
font_mono: Union[fonts.Font, str, Iterable[Union[fonts.Font, str]]] = (
|
| 274 |
+
fonts.GoogleFont("IBM Plex Mono"),
|
| 275 |
+
"ui-monospace",
|
| 276 |
+
"monospace",
|
| 277 |
+
),
|
| 278 |
+
):
|
| 279 |
+
super().__init__(
|
| 280 |
+
primary_hue=primary_hue,
|
| 281 |
+
secondary_hue=secondary_hue,
|
| 282 |
+
neutral_hue=neutral_hue,
|
| 283 |
+
spacing_size=spacing_size,
|
| 284 |
+
radius_size=radius_size,
|
| 285 |
+
text_size=text_size,
|
| 286 |
+
font=font,
|
| 287 |
+
font_mono=font_mono,
|
| 288 |
+
)
|
| 289 |
+
|
| 290 |
+
self.set(
|
| 291 |
+
body_background_fill="linear-gradient(114.2deg, rgba(184,215,21,1) -15.3%, rgba(21,215,98,1) 14.5%, rgba(21,215,182,1) 38.7%, rgba(129,189,240,1) 58.8%, rgba(219,108,205,1) 77.3%, rgba(240,129,129,1) 88.5%)"
|
| 292 |
+
)
|
| 293 |
+
# Initialize the theme
|
| 294 |
+
seafoam = Seafoam()
|
| 295 |
+
|
| 296 |
+
|
| 297 |
+
|
| 298 |
# Custom CSS styles
|
| 299 |
custom_css = """
|
| 300 |
<style>
|
| 301 |
|
| 302 |
+
/* Set background color for the entire Gradio app */
|
| 303 |
+
body, .gradio-container {
|
| 304 |
+
background-color: #f2f7f5 !important;
|
| 305 |
+
}
|
| 306 |
+
|
| 307 |
+
/* Optional: Add padding or margin for aesthetics */
|
| 308 |
+
.gradio-container {
|
| 309 |
+
padding: 20px;
|
| 310 |
+
}
|
| 311 |
+
|
| 312 |
#title {
|
| 313 |
color: green;
|
| 314 |
font-size: 36px;
|
|
|
|
| 319 |
font-size: 22px;
|
| 320 |
}
|
| 321 |
|
| 322 |
+
#title-row {
|
| 323 |
+
display: flex;
|
| 324 |
+
align-items: center;
|
| 325 |
+
gap: 10px;
|
| 326 |
+
margin-bottom: 0px;
|
| 327 |
+
}
|
| 328 |
+
#title-header h1 {
|
| 329 |
+
margin: 0;
|
| 330 |
+
}
|
| 331 |
+
|
| 332 |
|
| 333 |
#submit-btn {
|
| 334 |
+
background-color: #f5dec6; /* Banana leaf */
|
| 335 |
color: green;
|
| 336 |
padding: 15px 32px;
|
| 337 |
text-align: center;
|
| 338 |
text-decoration: none;
|
| 339 |
display: inline-block;
|
| 340 |
+
font-size: 30px;
|
| 341 |
margin: 4px 2px;
|
| 342 |
cursor: pointer;
|
| 343 |
}
|
|
|
|
| 345 |
background-color: #00FFFF;
|
| 346 |
}
|
| 347 |
|
| 348 |
+
|
| 349 |
.intext textarea {
|
| 350 |
color: green;
|
| 351 |
font-size: 20px;
|
|
|
|
| 400 |
yield gr.update(visible=False)
|
| 401 |
|
| 402 |
|
| 403 |
+
with gr.Blocks(theme=seafoam, css=custom_css) as demo:
|
| 404 |
|
| 405 |
#gr.HTML(custom_css) # Inject custom CSS
|
| 406 |
+
|
| 407 |
+
|
| 408 |
+
with gr.Row(elem_id="title-row"):
|
| 409 |
+
with gr.Column(scale=0):
|
| 410 |
+
gr.Image(
|
| 411 |
+
value="./AURA-CXR-Logo.png",
|
| 412 |
+
show_label=False,
|
| 413 |
+
width=60,
|
| 414 |
+
container=False
|
| 415 |
+
)
|
| 416 |
+
with gr.Column():
|
| 417 |
+
gr.Markdown(
|
| 418 |
+
"""
|
| 419 |
+
<h1 style="color:blue; font-size: 32px; font-weight: bold; margin: 0;">
|
| 420 |
+
AURA-CXR: Explainable Diagnosis of Chest Diseases from X-rays
|
| 421 |
+
</h1>
|
| 422 |
+
""",
|
| 423 |
+
elem_id="title-header"
|
| 424 |
+
)
|
| 425 |
|
| 426 |
gr.Markdown(
|
| 427 |
+
"<p id='description'>Upload an X-ray image and get its report with heat-map visualization.</p>"
|
|
|
|
|
|
|
|
|
|
| 428 |
)
|
| 429 |
+
|
| 430 |
+
|
| 431 |
+
|
| 432 |
+
# gr.Markdown(
|
| 433 |
+
# """
|
| 434 |
+
# <h1 style="color:blue; font-size: 36px; font-weight: bold; margin: 0;">AURA-CXR: Explainable Diagnosis of Chest Diseases from X-rays</h1>
|
| 435 |
+
# <p id="description">Upload an X-ray image and get its report with heat-map visualization.</p>
|
| 436 |
+
# """
|
| 437 |
+
# )
|
| 438 |
+
|
| 439 |
+
#<h1 style="color:blue; font-size: 36px; font-weight: bold">AURA-CXR: Explainable Diagnosis of Chest Diseases from X-rays</h1>
|
| 440 |
|
| 441 |
with gr.Row():
|
| 442 |
inputs = gr.File(label="Upload Chest X-ray Image File", type="filepath")
|
|
|
|
| 444 |
with gr.Row():
|
| 445 |
with gr.Column(scale=1, min_width=300):
|
| 446 |
outputs1 = gr.Image(label="Image Viewer")
|
| 447 |
+
history_query = gr.Textbox(label="History/Doctor's Query", elem_classes="intext")
|
| 448 |
with gr.Column(scale=1, min_width=300):
|
| 449 |
outputs2 = gr.Image(label="Grad_CAM-Visualization")
|
| 450 |
with gr.Column(scale=1, min_width=300):
|
| 451 |
outputs3 = gr.Textbox(label="Generated Report", elem_classes = "intext")
|
| 452 |
+
outputs4 = gr.Textbox(label = "Query's Response", elem_classes = "intext")
|
| 453 |
|
| 454 |
|
| 455 |
+
submit_btn = gr.Button("Generate Report", elem_id="submit-btn", variant="primary")
|
| 456 |
+
|
| 457 |
+
def show_image(file_path):
|
| 458 |
+
if is_cxr(file_path): # Check if it's a valid Chest X-ray
|
| 459 |
+
return file_path, "Valid Image" # Show the image in Image Viewer
|
| 460 |
+
else:
|
| 461 |
+
return None, "Invalid image. Please upload a proper Chest X-ray."
|
| 462 |
+
|
| 463 |
+
|
| 464 |
+
# Show the uploaded image immediately in the Image Viewer
|
| 465 |
+
inputs.change(
|
| 466 |
+
fn=show_image, # Calls the function to return the same file path
|
| 467 |
+
inputs=inputs,
|
| 468 |
+
outputs=[outputs1, outputs3]
|
| 469 |
+
)
|
| 470 |
+
|
| 471 |
+
|
| 472 |
+
|
| 473 |
+
|
| 474 |
submit_btn.click(
|
| 475 |
fn=xray_report_generator,
|
| 476 |
+
inputs=[inputs,history_query],
|
| 477 |
+
outputs=[outputs2, outputs3, outputs4])
|
| 478 |
|
| 479 |
|
| 480 |
gr.Markdown(
|
|
|
|
| 495 |
)
|
| 496 |
|
| 497 |
|
|
|
|
| 498 |
# Feedback section
|
| 499 |
gr.Markdown(
|
| 500 |
"""
|
|
|
|
| 504 |
|
| 505 |
with gr.Row():
|
| 506 |
feedback_input = gr.Textbox(label="Your Feedback", lines=4, placeholder="Enter your feedback here...")
|
| 507 |
+
feedback_submit_btn = gr.Button("Submit Feedback", elem_classes="small-button", variant="secondary")
|
| 508 |
+
feedback_output = gr.Textbox(label="Feedback Status", interactive=False)
|
| 509 |
+
|
| 510 |
+
|
| 511 |
|
| 512 |
feedback_submit_btn.click(
|
| 513 |
fn=save_feedback,
|
|
|
|
| 515 |
outputs=feedback_output
|
| 516 |
)
|
| 517 |
|
| 518 |
+
|
| 519 |
# Buttons and Markdown for Contact Us and Acknowledgment
|
| 520 |
with gr.Row():
|
| 521 |
contact_btn = gr.Button("Contact Us", elem_classes="small-button", variant="secondary")
|
|
|
|
| 526 |
|
| 527 |
# Update the content and make it visible when the buttons are clicked
|
| 528 |
contact_btn.click(fn=show_contact_info, outputs=contact_info, show_progress=False)
|
| 529 |
+
ack_btn.click(fn=show_acknowledgment, outputs=acknowledgment_info, show_progress=False)
|
| 530 |
+
|
| 531 |
+
# Update the content and make it visible when the buttons are clicked
|
| 532 |
+
# contact_btn.click(fn=show_contact_info, outputs=contact_info, show_progress=False)
|
| 533 |
+
# ack_btn.click(fn=show_acknowledgment, outputs=acknowledgment_info, show_progress=False)
|
| 534 |
+
|
| 535 |
|
| 536 |
demo.launch(share=True)
|
| 537 |
+
|