Spaces:
Running
on
Zero
Running
on
Zero
Update app.py
Browse files
app.py
CHANGED
@@ -33,7 +33,8 @@ model = torch.hub.load('isl-org/ZoeDepth', "ZoeD_N", pretrained=True).to("cpu").
|
|
33 |
@spaces.GPU(enable_queue=True)
|
34 |
def save_raw_16bit(depth, fpath="raw.png"):
|
35 |
if isinstance(depth, torch.Tensor):
|
36 |
-
depth
|
|
|
37 |
|
38 |
assert isinstance(depth, np.ndarray), "Depth must be a torch tensor or numpy array"
|
39 |
assert depth.ndim == 2, "Depth must be 2D"
|
@@ -73,7 +74,7 @@ def depth_edges_mask(depth):
|
|
73 |
return mask
|
74 |
|
75 |
@spaces.GPU(enable_queue=True)
|
76 |
-
def predict_depth(
|
77 |
global model
|
78 |
model.to(DEVICE)
|
79 |
depth = model.infer_pil(image)
|
@@ -81,10 +82,9 @@ def predict_depth(model, image):
|
|
81 |
|
82 |
@spaces.GPU(enable_queue=True)
|
83 |
def get_mesh(image: Image.Image, keep_edges=True):
|
84 |
-
global model
|
85 |
image.thumbnail((1024,1024)) # limit the size of the input image
|
86 |
|
87 |
-
depth = predict_depth(
|
88 |
pts3d = depth_to_points(depth[None])
|
89 |
pts3d = pts3d.reshape(-1, 3)
|
90 |
|
|
|
33 |
@spaces.GPU(enable_queue=True)
|
34 |
def save_raw_16bit(depth, fpath="raw.png"):
|
35 |
if isinstance(depth, torch.Tensor):
|
36 |
+
depth
|
37 |
+
= depth.squeeze().cpu().numpy()
|
38 |
|
39 |
assert isinstance(depth, np.ndarray), "Depth must be a torch tensor or numpy array"
|
40 |
assert depth.ndim == 2, "Depth must be 2D"
|
|
|
74 |
return mask
|
75 |
|
76 |
@spaces.GPU(enable_queue=True)
|
77 |
+
def predict_depth(image):
|
78 |
global model
|
79 |
model.to(DEVICE)
|
80 |
depth = model.infer_pil(image)
|
|
|
82 |
|
83 |
@spaces.GPU(enable_queue=True)
|
84 |
def get_mesh(image: Image.Image, keep_edges=True):
|
|
|
85 |
image.thumbnail((1024,1024)) # limit the size of the input image
|
86 |
|
87 |
+
depth = predict_depth(image)
|
88 |
pts3d = depth_to_points(depth[None])
|
89 |
pts3d = pts3d.reshape(-1, 3)
|
90 |
|